We present a generalization of the Anderson–Thakur special function, and we prove a rationality result for several variable twisted -series associated to shtuka functions.
Nous donnons une généralisation de la fonction spéciale d’Anderson–Thakur et nous prouvons un théorème de rationalité pour les séries à plusieurs variables associées aux fonctions chtoucas.
Revised:
Accepted:
Published online:
Mots-clés : Goss $L$-functions, several variable $L$-series, Drinfeld modules
@article{JTNB_2017__29_3_931_0, author = {Angl\`es, Bruno and Ngo Dac, Tuan and Tavares Ribeiro, Floric}, title = {Special functions and twisted $L$-series}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {931--961}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1007}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1007/} }
TY - JOUR AU - Anglès, Bruno AU - Ngo Dac, Tuan AU - Tavares Ribeiro, Floric TI - Special functions and twisted $L$-series JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 931 EP - 961 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1007/ DO - 10.5802/jtnb.1007 LA - en ID - JTNB_2017__29_3_931_0 ER -
%0 Journal Article %A Anglès, Bruno %A Ngo Dac, Tuan %A Tavares Ribeiro, Floric %T Special functions and twisted $L$-series %J Journal de théorie des nombres de Bordeaux %D 2017 %P 931-961 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1007/ %R 10.5802/jtnb.1007 %G en %F JTNB_2017__29_3_931_0
Anglès, Bruno; Ngo Dac, Tuan; Tavares Ribeiro, Floric. Special functions and twisted $L$-series. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 931-961. doi : 10.5802/jtnb.1007. https://www.numdam.org/articles/10.5802/jtnb.1007/
[1] Rank one elliptic -modules and -harmonic series, Duke Math. J., Volume 73 (1994) no. 3, pp. 491-542 | DOI | Zbl
[2] Log-Algebraicity of Twisted -Harmonic Series and Special Values of -series in Characteristic , J. Number Theory, Volume 60 (1996) no. 1, pp. 165-209 | DOI | Zbl
[3] Tensor Powers of the Carlitz Module and Zeta Values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | Zbl
[4] Exceptional Zeros of -series and Bernoulli–Carlitz Numbers (2015) (https://arxiv.org/abs/1511.06209)
[5] Twisted Characteristic Zeta Functions, J. Number Theory, Volume 168 (2016), pp. 180-214 | DOI | Zbl
[6] Stark units in positive characteristic, Proc. Lond. Math. Soc., Volume 115 (2017), pp. 763-812 | DOI | Zbl
[7] Universal Gauss-Thakur sums and -series, Invent. Math., Volume 200 (2015) no. 2, pp. 653-669 | DOI | Zbl
[8] Anderson-Stark units for (2016) (https://arxiv.org/abs/1501.06804, to appear in Trans. Am. Math. Soc.) | DOI
[9] Arithmetic of positive characteristic -series values in Tate algebras, Compos. Math., Volume 152 (2016) no. 1, pp. 1-61 (with an appendix by F. Demeslay) | DOI | Zbl
[10] Arithmetic of characteristic special -values, Proc. Lond. Math. Soc., Volume 110 (2015) no. 4, pp. 1000-1032 (with an appendix by V. Bosser) | DOI | Zbl
[11] Arithmetic of function fields units, Math. Ann., Volume 367 (2017), pp. 501-579 | DOI
[12] A class formula for -series in positive characteristic (2014) (https://arxiv.org/abs/1412.3704)
[13] Equivariant Special -values of abelian -modules (2015) (https://arxiv.org/abs/1503.07243)
[14] Special -values of abelian -modules, J. Number Theory, Volume 147 (2015), pp. 300-325 | DOI | Zbl
[15] Equivariant trace formula mod , C. R., Math., Acad. Sci. Paris, Volume 354 (2016) no. 4, pp. 335-338 | DOI
[16] Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, Springer, 1996, xiii+422 pages | Zbl
[17] Special -values and shtuka functions for Drinfeld modules on elliptic curves (2016) (https://arxiv.org/abs/1607.04211, to appear in Research in the Mathematical Sciences)
[18] Log-Algebraicity on Tensor Powers of the Carlitz Module and Special Values of Goss -Functions (work in progress)
[19] Values of certain -series in positive characteristic, Ann. Math., Volume 176 (2012) no. 3, pp. 2055-2093 | DOI | Zbl
[20] A Dirichlet unit theorem for Drinfeld modules, Math. Ann., Volume 348 (2010) no. 4, pp. 899-907 | DOI | Zbl
[21] Special -values of Drinfeld modules, Ann. Math., Volume 175 (2012) no. 1, pp. 369-391 | DOI | Zbl
[22] Gauss sums for , Invent. Math., Volume 94 (1988) no. 1, pp. 105-112 | DOI | Zbl
[23] Shtukas and Jacobi sums, Invent. Math., Volume 111 (1993) no. 3, pp. 557-570 | DOI | Zbl
Cited by Sources: