An important theorem of C. Hermite asserts that any set of algebraic number fields, whose discriminants are bounded in absolute value, must be finite. Properly formulated, a similar theorem holds true for function fields in one variable over a finite constant field. This paper gives a new proof of this result by using an analogue of the geometry of numbers approach due to H. Minkowski in the number field case.
Un théorème important de C. Hermite énonce que tout ensemble de corps de nombres, dont les discriminants sont bornés en valeur absolue, doit être fini. Correctement formulé, un résultat similaire est valable pour des corps de fonctions d’une variable sur un corps de constantes fini. Cet article donne une nouvelle preuve de ce résultat par l’analogie avec l’approche de la « géométrie des nombres » de H. Minkowski dans le cas des corps de nombres.
Accepted:
Revised after acceptance:
Published online:
@article{JTNB_2017__29_3_799_0, author = {Rosen, Michael}, title = {A {Geometric} {Proof} of {Hermite{\textquoteright}s} {Theorem} in {Function} {Fields}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {799--813}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1001}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1001/} }
TY - JOUR AU - Rosen, Michael TI - A Geometric Proof of Hermite’s Theorem in Function Fields JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 799 EP - 813 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1001/ DO - 10.5802/jtnb.1001 LA - en ID - JTNB_2017__29_3_799_0 ER -
%0 Journal Article %A Rosen, Michael %T A Geometric Proof of Hermite’s Theorem in Function Fields %J Journal de théorie des nombres de Bordeaux %D 2017 %P 799-813 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1001/ %R 10.5802/jtnb.1001 %G en %F JTNB_2017__29_3_799_0
Rosen, Michael. A Geometric Proof of Hermite’s Theorem in Function Fields. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 799-813. doi : 10.5802/jtnb.1001. https://www.numdam.org/articles/10.5802/jtnb.1001/
[1] Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, Springer, 1996, xiii+422 pages | Zbl
[2] Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, J. Reine Angew. Math., Volume 172 (1934), pp. 27-54 | Zbl
[3] Basic Algebra I, Freeman and Company, 1985, xviii+499 pages | Zbl
[4] Algebraic Number Theory, Graduate Texts in Mathematics, 110, Springer, 1986, xiii+354 pages | Zbl
[5] Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer, 2002, xii+358 pages | Zbl
[6] Local Fields, Graduate Texts in Mathematics, 67, Springer, 1979, vii+241 pages (Translated from the French by Marvin Jay Greenberg) | Zbl
[7] Algebraic Function Fields and Codes, Graduate Texts in Mathematics, 254, Springer, 2009, xiii+355 pages | Zbl
[8] Small generators of function fields, J. Théor. Nombres Bordx., Volume 22 (2010) no. 3, pp. 747-753 | DOI | Zbl
[9] A field theoretic proof of Hermite’s theorem for function fields, Arch. Math., Volume 105 (2015) no. 4, pp. 351-360 | DOI | Zbl
Cited by Sources: