[Extensions du théorème de Schreiber sur les sous-groupes approximatifs discrets de ]
In this paper we give an alternative proof of Schreiber’s theorem which says that an infinite discrete approximate subgroup in is relatively dense around a subspace. We also deduce from Schreiber’s theorem two new results. The first one says that any infinite discrete approximate subgroup in is a restriction of a Meyer set to a thickening of a linear subspace in , and the second one provides an extension of Schreiber’s theorem to the case of the Heisenberg group.
Dans cet article, nous donnons une autre démonstration du théorème de Schreiber : un sous-groupe approximatif discret infini de est relativement dense au voisinage d’un sous-espace. Nous déduisons aussi du théorème de Schreiber deux nouveaux résultats : le premier affirme qu’un sous-groupe approximatif discret infini de est la restriction d’un ensemble de Meyer à un épaississement d’un sous-espace linéaire de , et le second propose une extension du théorème de Schreiber au cas du groupe de Heisenberg.
Accepté le :
Publié le :
DOI : 10.5802/jep.90
Keywords: Approximate groups, approximate lattices, Meyer sets
Mots-clés : Groupes approximatifs, réseaux approximatifs, ensembles de Meyer
Fish, Alexander 1
CC-BY 4.0
@article{JEP_2019__6__149_0,
author = {Fish, Alexander},
title = {Extensions of {Schreiber{\textquoteright}s} theorem on discrete approximate subgroups in~$\protect \mathbb{R}^d$},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {149--162},
year = {2019},
publisher = {Ecole polytechnique},
volume = {6},
doi = {10.5802/jep.90},
zbl = {07033368},
mrnumber = {3915195},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.90/}
}
TY - JOUR
AU - Fish, Alexander
TI - Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$
JO - Journal de l’École polytechnique — Mathématiques
PY - 2019
SP - 149
EP - 162
VL - 6
PB - Ecole polytechnique
UR - https://www.numdam.org/articles/10.5802/jep.90/
DO - 10.5802/jep.90
LA - en
ID - JEP_2019__6__149_0
ER -
%0 Journal Article
%A Fish, Alexander
%T Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 149-162
%V 6
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.90/
%R 10.5802/jep.90
%G en
%F JEP_2019__6__149_0
Fish, Alexander. Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 149-162. doi: 10.5802/jep.90
[1] Approximate lattices, Duke Math. J., Volume 167 (2018) no. 15, pp. 2903-2964 | DOI | MR
[2] The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci., Volume 116 (2012), pp. 115-221 | DOI | MR
[3] Foundations of a structural theory of set addition, Translations of Mathematical Monographs, 37, American Mathematical Society, Providence, R. I., 1973 | Zbl | MR
[4] Freiman’s theorem in an arbitrary abelian group, J. London Math. Soc. (2), Volume 75 (2007) no. 1, pp. 163-175 | DOI | Zbl | MR
[5] Stable group theory and approximate subgroups, J. Amer. Math. Soc., Volume 25 (2012) no. 1, pp. 189-243 | DOI | MR | Zbl
[6] Meyer’s concept of quasicrystal and quasiregular sets, Comm. Math. Phys., Volume 179 (1996) no. 2, pp. 365-376 | Zbl | MR | DOI
[7] Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes in Math., 117, Springer-Verlag, Berlin-New York, 1970 | Zbl | MR
[8] Model sets: survey (2000) (arXiv:math/0002020)
[9] Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts, Ph. D. Thesis, Université Paris-Sud (1972)
Cité par Sources :





