On self-similar blow up for the energy supercritical semilinear wave equation
[Sur l’explosion auto-similaire pour l’équation d’onde semi-linéaire supercritique en énergie]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1483-1542

We analyse the energy supercritical semilinear wave equation

Φ tt -ΔΦ-|Φ| p-1 Φ=0

in d space. We first prove in a suitable regime of parameters the existence of a countable family of self-similar profiles which bifurcate from the soliton solution. We then prove the non-radial finite codimensional stability of these profiles by adapting the functional setting of [22].

Nous analysons l’équation d’onde semi-linéaire supercritique en énergie

Φ tt -ΔΦ-|Φ| p-1 Φ=0

dans l’espace d . Nous prouvons d’abord, dans un régime approprié de paramètres, l’existence d’une famille dénombrable de profils auto-similaires qui bifurquent à partir de la solution du soliton. Nous prouvons ensuite la stabilité non radiale en codimension finie de ces profils en adaptant le cadre fonctionnel de [22].

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.282
Classification : 35B44, 35C06, 35L05, 35L71
Keywords: Semi-linear wave equation, self-similar solution, blow up, focusing, energy super-critical, finite codimensional stability
Mots-clés : Équation d’onde semi-linéaire, solution auto-similaire, explosion, supercritique en énergie, stabilité en codimension finie

Kim, Jihoi  1

1 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1483_0,
     author = {Kim, Jihoi},
     title = {On self-similar blow up for the~energy~supercritical semilinear wave~equation},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1483--1542},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.282},
     zbl = {07952722},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.282/}
}
TY  - JOUR
AU  - Kim, Jihoi
TI  - On self-similar blow up for the energy supercritical semilinear wave equation
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1483
EP  - 1542
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.282/
DO  - 10.5802/jep.282
LA  - en
ID  - JEP_2024__11__1483_0
ER  - 
%0 Journal Article
%A Kim, Jihoi
%T On self-similar blow up for the energy supercritical semilinear wave equation
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1483-1542
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.282/
%R 10.5802/jep.282
%G en
%F JEP_2024__11__1483_0
Kim, Jihoi. On self-similar blow up for the energy supercritical semilinear wave equation. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1483-1542. doi: 10.5802/jep.282

[1] Bahri, Yakine; Martel, Yvan; Raphaël, Pierre Self-similar blow-up profiles for slightly supercritical nonlinear Schrödinger equations, Ann. Henri Poincaré, Volume 22 (2021) no. 5, pp. 1701-1749 | DOI | Zbl | MR

[2] Biernat, Paweł; Bizoń, Piotr Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat flow for harmonic maps between spheres, Nonlinearity, Volume 24 (2011) no. 8, pp. 2211-2228 | DOI | Zbl | MR

[3] Bizoń, Piotr; Maison, Dieter; Wasserman, Arthur Self-similar solutions of semilinear wave equations with a focusing nonlinearity, Nonlinearity, Volume 20 (2007) no. 9, pp. 2061-2074 | DOI | Zbl | MR

[4] Cassano, Biagio; Cossetti, Lucrezia; Fanelli, Luca Improved Hardy-Rellich inequalities, Comm. Pure Appl. Math., Volume 21 (2022) no. 3, pp. 867-889 | DOI | Zbl | MR

[5] Collot, Charles Type II blow up manifolds for the energy supercritical semilinear wave equation, Mem. Amer. Math. Soc., 252, no. 1205, American Mathematical Society, Providence, RI, 2018 | DOI

[6] Collot, Charles; Merle, Frank; Raphaël, Pierre Strongly anisotropic type II blow up at an isolated point, J. Amer. Math. Soc., Volume 33 (2020) no. 2, pp. 527-607 | DOI | Zbl | MR

[7] Collot, Charles; Raphaël, Pierre; Szeftel, Jeremie On the stability of type I blow up for the energy super critical heat equation, Mem. Amer. Math. Soc., 260, no. 1255, American Mathematical Society, Providence, RI, 2019 | DOI

[8] Dai, Wei; Duyckaerts, Thomas Self-similar solutions of focusing semi-linear wave equations in N , J. Evol. Equ., Volume 21 (2021), pp. 4703-4750 | DOI | Zbl | MR

[9] Donninger, Roland; Schörkhuber, Birgit On blowup in supercritical wave equations, Comm. Math. Phys., Volume 346 (2016), pp. 907-943 | DOI | Zbl | MR

[10] Duarte, Rodrigo; Silva, Jorge Drumond Weighted Gagliardo-Nirenberg interpolation inequalities, J. Funct. Anal., Volume 285 (2023) no. 5, 110009, 49 pages | Zbl | MR

[11] Engel, Klaus-Jochen; Nagel, Rainer; Brendle, Simon One-parameter semigroups for linear evolution equations, Graduate Texts in Math., 194, Springer, New York, 2000 | MR

[12] Gao, Yili; Xue, Jun Local well-posedness and small data scattering for energy super-critical nonlinear wave equations, Appl. Anal., Volume 100 (2021) no. 3, pp. 663-674 | DOI | Zbl | MR

[13] Glogić, Irfan; Schörkhuber, Birgit Co-dimension one stable blowup for the supercritical cubic wave equation, Adv. Math., Volume 390 (2021), 107930, 79 pages | DOI | Zbl | MR

[14] Herrero, Miguel A; Velázquez, Juan JL A blow up result for semilinear heat equations in the supercritical case (1992) (preprint)

[15] Hillairet, Matthieu; Raphaël, Pierre Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation, Anal. PDE, Volume 5 (2012) no. 4, pp. 777-829 | DOI | Zbl | MR

[16] Krieger, Joachim; Schlag, Wilhelm; Tataru, Daniel Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., Volume 171 (2008) no. 3, pp. 543-615 | DOI | Zbl | MR

[17] Li, Yi Asymptotic behavior of positive solutions of equation Δu+K(x)u p =0 in n , J. Differential Equations, Volume 95 (1992) no. 2, pp. 304-330 | DOI | Zbl | MR

[18] Matano, Hiroshi; Merle, Frank On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., Volume 57 (2004) no. 11, pp. 1494-1541 | DOI | Zbl | MR

[19] Matano, Hiroshi; Merle, Frank Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., Volume 256 (2009) no. 4, pp. 992-1064 | DOI | Zbl | MR

[20] Merle, Frank; Raphaël, Pierre; Rodnianski, Igor Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math., Volume 193 (2013) no. 2, pp. 249-365 | DOI | Zbl | MR

[21] Merle, Frank; Raphaël, Pierre; Rodnianski, Igor Type II blow up for the energy supercritical NLS, Camb. J. Math., Volume 3 (2015) no. 4, pp. 439-617 | DOI | Zbl | MR

[22] Merle, Frank; Raphaël, Pierre; Rodnianski, Igor; Szeftel, Jeremie On blow up for the energy super critical defocusing nonlinear Schrödinger equations, Invent. Math., Volume 227 (2022) no. 1, pp. 247-413 | DOI | Zbl | MR

[23] Merle, Frank; Zaag, Hatem Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math., Volume 125 (2003) no. 5, pp. 1147-1164 | Zbl | DOI | MR

[24] Merle, Frank; Zaag, Hatem Determination of the blow-up rate for a critical semilinear wave equation, Math. Ann., Volume 331 (2005) no. 2, pp. 395-416 | DOI | Zbl | MR

[25] Merle, Frank; Zaag, Hatem Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., Volume 253 (2007) no. 1, pp. 43-121 | DOI | Zbl | MR

[26] Merle, Frank; Zaag, Hatem Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension, Sémin. Équ. Dériv. Partielles 2009–2010, École Polytechnique, Palaiseau, 2012 (Exp. no. XI, 10 p.) | MR

[27] Olver, Frank WJ NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010

[28] Raphaël, Pierre; Rodnianski, Igor Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 1-122 | DOI | Numdam | Zbl | MR

[29] Rodnianski, Igor; Sterbenz, Jacob On the formation of singularities in the critical O(3) σ-model, Ann. of Math. (2), Volume 172 (2010) no. 1, pp. 187-242 | DOI | Zbl | MR

[30] Toth, John A; Zelditch, Steve Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132 | DOI | Zbl | MR

[31] Vainikko, Gennadi A smooth solution to a linear system of singular ODEs, Z. Anal. Anwendungen, Volume 32 (2013) no. 3, pp. 349-370 | DOI | Zbl | MR

Cité par Sources :