Time spent in a ball by a critical branching random walk
[Temps passé dans une boule pour une marche aléatoire branchante critique]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1441-1481

We study a critical branching random walk on d . We focus on the tail of the time spent in a ball, and our study, in dimension four and higher, sheds new light on the recent result of Angel, Hutchcroft and Jarai [AHJ21], in particular on the special features of the critical dimension four. Finally, we analyze the number of walks transported by the branching random walk on the boundary of a distant ball.

Nous étudions la queue de distribution du temps passé dans une boule par une marche aléatoire branchante critique. Notre étude apporte un éclairage nouveau aux résultats récents de Angel, Hutcroft et Jarai, en particulier sur le cas de la dimension 4. Enfin nous étudions également le nombre de particules déposées sur la frontière d’une boule.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.281
Classification : 60G50, 60J80
Keywords: Branching random walk, local times, range
Mots-clés : Marches aléatoires branchantes, temps local, amplitude

Asselah, Amine  1   ; Schapira, Bruno  2

1 LAMA, Univ Paris Est Créteil, Univ Gustave Eiffel, UPEM, CNRS, F-94010, Créteil, France & New York University at Shanghai
2 Aix-Marseille Université, I2M, CNRS UMR 7373, 13453 Marseille, France & Université Lyon 1, Institut Camille Jordan, CNRS UMR 5208
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1441_0,
     author = {Asselah, Amine and Schapira, Bruno},
     title = {Time spent in a ball by a~critical~branching~random walk},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1441--1481},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.281},
     mrnumber = {4827661},
     zbl = {07952721},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.281/}
}
TY  - JOUR
AU  - Asselah, Amine
AU  - Schapira, Bruno
TI  - Time spent in a ball by a critical branching random walk
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1441
EP  - 1481
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.281/
DO  - 10.5802/jep.281
LA  - en
ID  - JEP_2024__11__1441_0
ER  - 
%0 Journal Article
%A Asselah, Amine
%A Schapira, Bruno
%T Time spent in a ball by a critical branching random walk
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1441-1481
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.281/
%R 10.5802/jep.281
%G en
%F JEP_2024__11__1441_0
Asselah, Amine; Schapira, Bruno. Time spent in a ball by a critical branching random walk. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1441-1481. doi: 10.5802/jep.281

[AHJ21] Angel, Omer; Hutchcroft, Tom; Járai, Antal On the tail of the branching random walk local time, Probab. Theory Related Fields, Volume 180 (2021) no. 1-2, pp. 467-494 | DOI | Zbl | MR

[AN04] Athreya, K. B.; Ney, P. E. Branching processes, Dover Publications, Inc., Mineola, NY, 2004 (Reprint of the 1972 original) | MR

[ASS23] Asselah, Amine; Schapira, Bruno; Sousi, Perla Local times and capacity for transient branching random walks, 2023 | arXiv

[BC12] Benjamini, Itai; Curien, Nicolas Recurrence of the d -valued infinite snake via unimodularity, Electron. Comm. Probab., Volume 17 (2012), 1, 10 pages | DOI | Zbl | MR

[BH22] Bai, Tianyi; Hu, Yueyun Capacity of the range of branching random walks in low dimensions, Trudy Mat. Inst. Steklov., Volume 316 (2022), pp. 32-46 | DOI | Zbl

[BH23] Bai, Tianyi; Hu, Yueyun Convergence in law for the capacity of the range of a critical branching random walk, Ann. Appl. Probab., Volume 33 (2023) no. 6A, pp. 4964-4994 | DOI | Zbl | MR

[BHJ23] Berestycki, Nathanaël; Hutchcroft, Tom; Jego, Antoine Thick points of 4D critical branching Brownian motion, 2023 | arXiv

[BW22] Bai, Tianyi; Wan, Yijun Capacity of the range of tree-indexed random walk, Ann. Appl. Probab., Volume 32 (2022) no. 3, pp. 1557-1589 | DOI | Zbl | MR

[DE51] Dvoretzky, A.; Erdős, P. Some problems on random walk in space, Proc. Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, Univ. California Press, Berkeley-Los Angeles, CA, 1951, pp. 353-367 | DOI | Zbl | MR

[DKLT22] Duquesne, Thomas; Khanfir, Robin; Lin, Shen; Torri, Niccolò Scaling limits of tree-valued branching random walks, Electron. J. Probab., Volume 27 (2022), 16, 54 pages | DOI | MR | Zbl

[Kes95] Kesten, Harry Branching random walk with a critical branching part, J. Theoret. Probab., Volume 8 (1995) no. 4, pp. 921-962 | DOI | Zbl | MR

[LGL15] Le Gall, Jean-François; Lin, Shen The range of tree-indexed random walk in low dimensions, Ann. Probab., Volume 43 (2015) no. 5, pp. 2701-2728 | DOI | MR | Zbl

[LGL16] Le Gall, Jean-François; Lin, Shen The range of tree-indexed random walk, J. Inst. Math. Jussieu, Volume 15 (2016) no. 2, pp. 271-317 | DOI | Zbl | MR

[LL10] Lawler, Gregory F.; Limic, Vlada Random walk: a modern introduction, Cambridge Studies in Advanced Math., 123, Cambridge University Press, Cambridge, 2010 | DOI | MR

[LSS24] Legrand, Alexandre; Sabot, Christophe; Schapira, Bruno Recurrence and transience of the critical random walk snake in random conductances, 2024 | arXiv

[LZ11] Lalley, Steven P.; Zheng, Xinghua Occupation statistics of critical branching random walks in two or higher dimensions, Ann. Probab., Volume 39 (2011) no. 1, pp. 327-368 | DOI | Zbl | MR

[NV75] Nagaev, S. V.; Vahrušev, N. V. An estimate of large deviation probabilities for a critical Galton-Watson process, Teor. Verojatnost. i Primenen., Volume 20 (1975), pp. 181-182 | Zbl | MR

[NV03] Nagaev, S. V.; Vakhtel, V. I. Limit theorems for probabilities of large deviations of a Galton-Watson process, Diskret. Mat., Volume 15 (2003) no. 1, pp. 3-27 translation in Discrete Math. Appl. 13 (2003), no. 1, p. 1–26 | DOI | Zbl

[PZ19] Procaccia, Eviatar B.; Zhang, Yuan Connectivity properties of branching interlacements, ALEA Lat. Am. J. Probab. Math. Stat., Volume 16 (2019) no. 1, pp. 279-314 | DOI | Zbl | MR

[Shi15] Shi, Zhan Branching random walks, Lect. Notes in Math., 2151, Springer, Cham, 2015 | DOI | MR

[Zhu16a] Zhu, Qingsan On the critical branching random walk I: branching capacity and visiting probability, 2016 | arXiv

[Zhu16b] Zhu, Qingsan On the critical branching random walk II: branching capacity and branching recurrence, 2016 | arXiv

[Zhu18] Zhu, Qingsan Branching interlacements and tree-indexed random walks in tori, 2018 | arXiv

[Zhu19] Zhu, Qingsan An upper bound for the probability of visiting a distant point by a critical branching random walk in 4 , Electron. Comm. Probab., Volume 24 (2019), 32, 6 pages | DOI | Zbl | MR

[Zhu21] Zhu, Qingsan On the critical branching random walk III: The critical dimension, Ann. Inst. H. Poincaré Probab. Statist., Volume 57 (2021) no. 1, pp. 73-93 | DOI | Zbl | MR

Cité par Sources :