[Paramétrisations (uni)rationelles de , et en petits genres]
The moduli space parametrizes double covers of smooth curves of genus ramified at points. We will prove the (uni)rationality of , and in low genera.
L’espace de modules paramétrise les revêtements doubles de courbes lisses de genre ramifiés en points. Nous montrons la (uni)rationalité de , et en petits genres.
Accepté le :
Publié le :
DOI : 10.5802/jep.280
Keywords: Prym curves, birational geometry, Nikulin surfaces
Mots-clés : Courbes de Prym, géométrie birationnelle, surfaces de Nikulin
Knutsen, Andreas Leopold  1 ; Lelli-Chiesa, Margherita  2 ; Verra, Alessandro  2
CC-BY 4.0
@article{JEP_2024__11__1411_0,
author = {Knutsen, Andreas Leopold and Lelli-Chiesa, Margherita and Verra, Alessandro},
title = {(Uni)rational parametrizations of~$\mathcal{R}_{g,2}$,~$\mathcal{R}_{g,4}$~and~$\mathcal{R}_{g,6}$~in~low~genera},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1411--1440},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.280},
mrnumber = {4827660},
zbl = {07942490},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.280/}
}
TY - JOUR
AU - Knutsen, Andreas Leopold
AU - Lelli-Chiesa, Margherita
AU - Verra, Alessandro
TI - (Uni)rational parametrizations of $\mathcal{R}_{g,2}$, $\mathcal{R}_{g,4}$ and $\mathcal{R}_{g,6}$ in low genera
JO - Journal de l’École polytechnique — Mathématiques
PY - 2024
SP - 1411
EP - 1440
VL - 11
PB - Ecole polytechnique
UR - https://www.numdam.org/articles/10.5802/jep.280/
DO - 10.5802/jep.280
LA - en
ID - JEP_2024__11__1411_0
ER -
%0 Journal Article
%A Knutsen, Andreas Leopold
%A Lelli-Chiesa, Margherita
%A Verra, Alessandro
%T (Uni)rational parametrizations of $\mathcal{R}_{g,2}$, $\mathcal{R}_{g,4}$ and $\mathcal{R}_{g,6}$ in low genera
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1411-1440
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.280/
%R 10.5802/jep.280
%G en
%F JEP_2024__11__1411_0
Knutsen, Andreas Leopold; Lelli-Chiesa, Margherita; Verra, Alessandro. (Uni)rational parametrizations of $\mathcal{R}_{g,2}$, $\mathcal{R}_{g,4}$ and $\mathcal{R}_{g,6}$ in low genera. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1411-1440. doi: 10.5802/jep.280
[BDC90] The moduli space of genus four double covers of elliptic curves is rational, Pacific J. Math., Volume 144 (1990) no. 2, pp. 219-227 http://projecteuclid.org/euclid.pjm/1102645727 | DOI | Zbl | MR
[BDC99] Bielliptic curves of genus three: canonical models and moduli space, Indag. Math. (N.S.), Volume 10 (1999) no. 2, pp. 183-190 | DOI | Zbl | MR
[Bea96] Complex algebraic surfaces, London Math. Soc. Student Texts, 34, Cambridge University Press, Cambridge, 1996 | DOI | MR
[Bog86] Rationality of the moduli of hyperelliptic curves of arbitrary genus, Proceedings of the 1984 Vancouver conference in algebraic geometry (CMS Conf. Proc.), Volume 6, American Mathematical Society, Providence, RI, 1986, pp. 17-37 | Zbl | MR
[Bru16] is of general type, Algebra Number Theory, Volume 10 (2016) no. 9, pp. 1949-1964 | DOI | Zbl | MR
[Bud24] The birational geometry of and Prym-canonical divisorial strata, Selecta Math. (N.S.), Volume 30 (2024) no. 2, 30, 31 pages | DOI | Zbl | MR
[CC93] Symmetric products of elliptic curves and surfaces of general type with , J. Algebraic Geom., Volume 2 (1993) no. 3, pp. 389-411 | Zbl | MR
[CDC96] The rationality of the moduli space of bielliptic curves of genus five, Bull. London Math. Soc., Volume 28 (1996) no. 4, pp. 356-362 | DOI | Zbl | MR
[CDC02] A characterization of bielliptic curves and applications to their moduli spaces, Ann. Mat. Pura Appl. (4), Volume 181 (2002) no. 2, pp. 213-221 | DOI | Zbl | MR
[CJ01] The homogeneous ideals of higher secant varieties, J. Pure Appl. Algebra, Volume 158 (2001) no. 2-3, pp. 123-129 | DOI | Zbl | MR
[DLC24] Double covers of curves on Nikulin surfaces, Moduli spaces and vector bundles—new trends (Contemp. Math.), Volume 803, American Mathematical Society, Providence, RI, 2024, pp. 153-170 | DOI | Zbl
[DN89] Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Volume 97 (1989) no. 1, pp. 53-94 | DOI | Zbl | MR
[Dol96] Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., Volume 81 (1996) no. 3, pp. 2599-2630 | DOI | Zbl | MR
[Dol08] Rationality of and , Pure Appl. Math. Q, Volume 4 (2008) no. 2, pp. 501-508 | DOI | Zbl | MR
[Don84] The unirationality of , Ann. of Math. (2), Volume 119 (1984) no. 2, pp. 269-307 | DOI | Zbl | MR
[FL10] The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. (JEMS), Volume 12 (2010) no. 3, pp. 755-795 | DOI | Zbl | MR
[FV12] Moduli of theta-characteristics via Nikulin surfaces, Math. Ann., Volume 354 (2012) no. 2, pp. 465-496 | DOI | Zbl | MR
[FV16] Prym varieties and moduli of polarized Nikulin surfaces, Adv. Math., Volume 290 (2016), pp. 314-328 | DOI | Zbl | MR
[GS08] Projective models of K3 surfaces with an even set, Adv. Geom., Volume 8 (2008) no. 3, pp. 413-440 | DOI | Zbl | MR
[ILGS09] The moduli space of étale double covers of genus 5 curves is unirational, Pacific J. Math., Volume 239 (2009) no. 1, pp. 39-52 | DOI | Zbl | MR
[Kat84] Rationality of the moduli spaces of hyperelliptic curves, Izv. Akad. Nauk SSSR Ser. Mat., Volume 48 (1984) no. 4, pp. 705-710 | MR
[Kat85] The rationality of moduli spaces of hyperelliptic curves, Math. USSR-Izv., Volume 25 (1985) no. 1, pp. 45-50 | DOI | Zbl
[KLCV20] Moduli of non-standard Nikulin surfaces in low genus, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Volume 21 (2020), pp. 361-384 | Zbl | MR
[KLCV21] Half Nikulin surfaces and moduli of Prym curves, J. Inst. Math. Jussieu, Volume 20 (2021) no. 5, pp. 1547-1584 | DOI | Zbl | MR
[MP12] Generic Torelli theorem for Prym varieties of ramified coverings, Compositio Math., Volume 148 (2012) no. 4, pp. 1147-1170 | DOI | Zbl | MR
[Mum74] Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York-London, 1974, pp. 325-350 | Zbl
[NO19] Generic injectivity of the Prym map for double ramified coverings, Trans. Amer. Math. Soc., Volume 371 (2019) no. 5, pp. 3627-3646 (With an appendix by Alessandro Verra) | DOI | Zbl | MR
[NO22] Global Prym-Torelli for double coverings ramified in at least six points, J. Algebraic Geom., Volume 31 (2022) no. 2, pp. 387-396 | DOI | Zbl | MR
[Rie57] Theorie der Abel’schen Functionen, J. reine angew. Math., Volume 54 (1857), pp. 115-155 | Zbl | DOI | MR
[Ver84] A short proof of the unirationality of , Nederl. Akad. Wetensch. Indag. Math., Volume 46 (1984) no. 3, pp. 339-355 | DOI | Zbl | MR
[Ver08] On the universal principally polarized abelian variety of dimension 4, Curves and abelian varieties (Contemp. Math.), Volume 465, American Mathematical Society, Providence, RI, 2008, pp. 253-274 | DOI | Zbl
[vGS07] Nikulin involutions on K3 surfaces, Math. Z., Volume 255 (2007) no. 4, pp. 731-753 | DOI | Zbl | MR
Cité par Sources :





