[Quotients finis de variétés abéliennes admettant une résolution de Calabi-Yau]
Let be an abelian variety, and a finite group acting freely in codimension two. We discuss whether the singular quotient admits a resolution that is a Calabi-Yau manifold. While Oguiso constructed two examples in dimension 3, we show that there are none in dimension 4. We also classify up to isogeny the possible abelian varieties in arbitrary dimension.
Soit une variété abélienne et un groupe fini agissant librement en codimension par automorphismes sur . On s’intéresse ici aux conditions d’existence d’une résolution du quotient singulier qui soit une variété de Calabi-Yau. Tandis qu’en dimension , deux exemples de quotients admettant une telle résolution ont été construits par Oguiso dans un article de 1994, on montre ici qu’aucun quotient de la sorte n’existe en dimension . En dimension quelconque, on classifie les variétés abéliennes susceptibles d’admettre des quotients de la sorte, à isogénie près.
Accepté le :
Publié le :
DOI : 10.5802/jep.277
Keywords: Crepant resolution, abelian variety with complex multiplication, Calabi-Yau manifold
Mots-clés : Résolution crépante, variété abélienne à multiplication complexe, variété de Calabi-Yau
Gachet, Cécile  1
CC-BY 4.0
@article{JEP_2024__11__1219_0,
author = {Gachet, C\'ecile},
title = {Finite quotients of abelian varieties with {a~Calabi-Yau} resolution},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1219--1286},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.277},
mrnumber = {4812045},
zbl = {07928815},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.277/}
}
TY - JOUR AU - Gachet, Cécile TI - Finite quotients of abelian varieties with a Calabi-Yau resolution JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1219 EP - 1286 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.277/ DO - 10.5802/jep.277 LA - en ID - JEP_2024__11__1219_0 ER -
%0 Journal Article %A Gachet, Cécile %T Finite quotients of abelian varieties with a Calabi-Yau resolution %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1219-1286 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.277/ %R 10.5802/jep.277 %G en %F JEP_2024__11__1219_0
Gachet, Cécile. Finite quotients of abelian varieties with a Calabi-Yau resolution. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1219-1286. doi: 10.5802/jep.277
[1] Rational curves and MBM classes on hyperkähler manifolds: a survey, Rationality of varieties (Progress in Math.), Volume 342, Birkhäuser/Springer, Cham, 2021, pp. 75-96 | DOI | Zbl
[2] On the Kummer construction, Rev. Mat. Univ. Complut., Volume 23 (2010) no. 1, pp. 191-215 | DOI | Zbl | MR
[3] Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties, Invent. Math., Volume 228 (2022) no. 3, pp. 1255-1308 | DOI | Zbl | MR
[4] Variétés kählériennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1984), pp. 755-782 | Zbl | MR
[5] Boundedness of elliptic Calabi-Yau varieties with a rational section, 2020 | arXiv
[6] Complex abelian varieties, Grundlehren Math. Wissen., 302, Springer-Verlag, Berlin, 2004 | DOI
[7] Higher dimensional Calabi-Yau manifolds of Kummer type, Math. Nachr., Volume 293 (2020) no. 4, pp. 638-650 | DOI | Zbl | MR
[8] Birational boundedness of rationally connected Calabi-Yau 3-folds, Adv. Math., Volume 378 (2021), 107541, 32 pages | DOI | Zbl | MR
[9] Higher-dimensional modular Calabi-Yau manifolds, Canad. Math. Bull., Volume 50 (2007) no. 4, pp. 486-503 | Zbl | MR | DOI
[10] Generalised Kummer constructions and Weil restrictions, J. Number Theory, Volume 129 (2009) no. 8, pp. 1965-1975 | DOI | Zbl | MR
[11] Hyperkähler manifolds, 2018 | arXiv
[12] Birational boundedness of low-dimensional elliptic Calabi-Yau varieties with a section, Compositio Math., Volume 157 (2021) no. 8, pp. 1766-1806 | DOI | Zbl | MR
[13] A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018), pp. 245-296 | DOI | Zbl | MR
[14] Klt varieties with trivial canonical class. Holonomy, differential forms and fundamental groups, Geom. Topol., Volume 23 (2019), p. 2051–2124 | DOI | Zbl | MR
[15] Algebraic Geometry, Graduate Texts in Math., 52, Springer, 1977 | DOI
[16] Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019), pp. 395-419 | DOI | Zbl | MR
[17] Finite group theory, Graduate Studies in Math., 92, American Mathematical Society, Providence, RI, 2008 | DOI
[18] The McKay correspondence for finite subgroups of , Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 221-240 | Zbl | MR
[19] Survey of finiteness results for hyperkähler manifolds, Phenomenological approach to algebraic geometry (Banach Center Publ.), Volume 116, Polish Acad. Sci. Inst. Math., Warsaw, 2018, pp. 77-86 | Zbl
[20] On the Gorenstein property of the ring of invariants of a Gorenstein ring, Izv. Akad. Nauk SSSR Ser. Mat., Volume 40 (1976) no. 1, pp. 50-56 | Zbl | MR
[21] Singularities of the minimal model program, Cambridge Tracts in Math., 200, Cambridge University Press, Cambridge, 2013 | DOI
[22] Classification of reflexive polyhedra in three dimensions, Adv. Theo. Math. Phys., Volume 2 (1998) no. 4, pp. 853-871 | DOI | Zbl | MR
[23] Complete classification of reflexive polyhedra in four dimensions, Adv. Theo. Math. Phys., Volume 4 (2000) no. 6, pp. 1209-1230 | DOI | Zbl | MR
[24] A characterization of quotients of abelian varieties, Internat. Math. Res. Notices, Volume 2018 (2018), pp. 292-319 | Zbl | MR
[25] Cyclotomic fields with unique factorization, J. reine angew. Math., Volume 286/287 (1976), pp. 248-256 | Zbl | MR
[26] The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry (Sendai, 1985) (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 449-476 | DOI | Zbl
[27] Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc., Volume 90 (1984) no. 1, pp. 15-20 | DOI | Zbl | MR
[28] A note on symplectic singularities, 2001 | arXiv
[29] On algebraic fiber space structures on a Calabi-Yau -fold, Internat. J. Math., Volume 4 (1993) no. 3, pp. 439-465 | DOI | Zbl | MR
[30] On the complete classification of Calabi-Yau threefolds of type , Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 329-339 | Zbl
[31] Calabi-Yau threefolds with positive second Chern class, Comm. Anal. Geom., Volume 6 (1998) no. 1, pp. 153-172 | DOI | Zbl | MR
[32] Calabi-Yau threefolds of quotient type, Asian J. Math., Volume 5 (2001) no. 1, pp. 43-77 | DOI | Zbl | MR
[33] Quotients of by and Calabi-Yau manifolds, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, pp. 90-98 | DOI | Zbl
[34] Canonical -folds, Journées de Géometrie Algébrique d’Angers (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273-310 | Zbl
[35] Minimal models of canonical -folds, Algebraic varieties and analytic varieties (Tokyo, 1981) (Adv. Stud. Pure Math.), Volume 1, North-Holland, Amsterdam, 1983, pp. 131-180 | DOI | Zbl
[36] A course in the theory of groups, Graduate Texts in Math., 80, Springer-Verlag, New York, 1996 | DOI
[37] Crepant property of Fujiki-Oka resolutions for Gorenstein abelian quotient singularities, Nihonkai Math. J., Volume 32 (2021) no. 1, pp. 41-69 | Zbl | MR
[38] Singular threefolds with numerically trivial first and second Chern classes, J. Algebraic Geom., Volume 3 (1994) no. 2, pp. 265-281 | Zbl | MR
[39] Complex multiplication of abelian varieties and its applications to number theory, Publ. of the M.S.J., 6, The Mathematical Society of Japan, Tokyo, 1961
[40] On the Kodaira dimension of the moduli space of abelian varieties, Invent. Math., Volume 68 (1982) no. 3, pp. 425-439 | DOI | Zbl | MR
[41] Introduction to cyclotomic fields, Graduate Texts in Math., 83, Springer-Verlag, New York, 1997 | DOI
[42] Certain invariant subrings are Gorenstein. II, Osaka J. Math., Volume 11 (1974), pp. 1-8 http://projecteuclid.org/euclid.ojm/1200694703 ibid. 11 (1974), p. 379–388 | Zbl | MR
[43] The Kähler cone on Calabi-Yau threefolds, Invent. Math., Volume 107 (1992) no. 3, pp. 561-583 | DOI | Zbl | MR
[44] Calabi–Yau threefolds with Picard number three, 2020 | arXiv
[45] Boundedness questions for Calabi-Yau threefolds, J. Algebraic Geom., Volume 30 (2021) no. 4, pp. 631-684 | DOI | Zbl | MR
[46] On smoothness of minimal models of quotient singularities by finite subgroups of , Glasgow Math. J., Volume 60 (2018) no. 3, pp. 603-634 | DOI | Zbl | MR
Cité par Sources :





