[Sur l’existence de filtrations gr-semi-stables d’une -connexion orthogonale/symplectique]
In this paper, we study the existence of gr-semistable filtrations of orthogonal/symplectic -connections. It is known that gr-semistable filtrations always exist for flat bundles in arbitrary characteristic. However, we found a counterexample of orthogonal flat bundles of rank 5. The central new idea in this example is the notion of quasi gr-semistability for orthogonal/symplectic -connections. We establish the equivalence between gr-semistability and quasi gr-semistablity for an orthogonal/symplectic -connection. This provides a way to determine whether an orthogonal/symplectic -connection is gr-semistable. As an application, we obtain a characterization of gr-semistable orthogonal -connections of rank .
Dans cet article, nous étudions l’existence de filtrations gr-semi-stables pour des -connexions orthogonales/symplectiques. Il est connu que de telles filtrations existent toujours pour les fibrés plats en caractéristique arbitraire. Cependant, nous avons trouvé un contre-exemple pour les fibrés plats orthogonaux de rang . La nouvelle idée centrale de cet exemple est la notion de quasi gr-semi-stabilité pour les -connexions orthogonales/symplectiques. Nous établissons l’équivalence entre la gr-semi-stabilité et la quasi gr-semi-stabilité pour une -connexion orthogonale/symplectique. Cela permet de déterminer si une -connexion orthogonale/symplectique est gr-semi-stable. Comme application, nous obtenons une caractérisation des -connexions orthogonales gr-semi-stables de rang .
Accepté le :
Publié le :
DOI : 10.5802/jep.276
Keywords: Orthogonal/symplectic $\lambda $-connection, semistability, gr-semistability, quasi gr-semistability
Mots-clés : $\lambda $-connexion orthogonale/symplectique, semi-stabilité, gr-semi-stabilité, quasi gr-semi-stabilité
Sheng, Mao  1 ; Sun, Hao  2 ; Wang, Jianping  3
CC-BY 4.0
@article{JEP_2024__11__1181_0,
author = {Sheng, Mao and Sun, Hao and Wang, Jianping},
title = {On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1181--1218},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.276},
mrnumber = {4812044},
zbl = {07928814},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.276/}
}
TY - JOUR AU - Sheng, Mao AU - Sun, Hao AU - Wang, Jianping TI - On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1181 EP - 1218 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.276/ DO - 10.5802/jep.276 LA - en ID - JEP_2024__11__1181_0 ER -
%0 Journal Article %A Sheng, Mao %A Sun, Hao %A Wang, Jianping %T On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1181-1218 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.276/ %R 10.5802/jep.276 %G en %F JEP_2024__11__1181_0
Sheng, Mao; Sun, Hao; Wang, Jianping. On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1181-1218. doi: 10.5802/jep.276
[AHLH23] Existence of moduli spaces for algebraic stacks, Invent. Math., Volume 234 (2023) no. 3, pp. 949-1038 | DOI | Zbl | MR
[Ati57] Vector bundles over an elliptic curve, Proc. London Math. Soc. (3), Volume 7 (1957), pp. 414-452 | DOI | Zbl | MR
[BMW11] Orthogonal and symplectic parabolic bundles, J. Geom. Phys., Volume 61 (2011) no. 8, pp. 1462-1475 | DOI | Zbl | MR
[BP03] Semistable principal bundles. II. Positive characteristics, Transform. Groups, Volume 8 (2003) no. 1, pp. 3-36 | DOI | Zbl | MR
[CH23] Low rank orthogonal bundles and quadric fibrations, J. Korean Math. Soc., Volume 60 (2023) no. 6, pp. 1137-1169 | DOI | Zbl | MR
[CS21] (G,P)-opers and global Slodowy slices, Adv. Math., Volume 377 (2021), 107490, 43 pages | DOI | Zbl | MR
[Gie73] Stable vector bundles and the Frobenius morphism, Ann. Sci. École Norm. Sup. (4), Volume 6 (1973), pp. 95-101 | Numdam | Zbl | DOI | MR
[GS03] Stable tensors and moduli space of orthogonal sheaves, 2003 | arXiv | arXiv
[HL10] The geometry of moduli spaces of sheaves, Cambridge Math. Library, Cambridge University Press, Cambridge, 2010 | DOI | MR
[KSZ21] Topological invariants of parabolic -Higgs bundles, Math. Z., Volume 297 (2021) no. 1-2, pp. 585-632 | DOI | Zbl | MR
[KSZ24] Logahoric Higgs torsors for a complex reductive group, Math. Ann., Volume 388 (2024) no. 3, pp. 3183-3228 | DOI | Zbl | MR
[Lan14] Semistable modules over Lie algebroids in positive characteristic, Doc. Math., Volume 19 (2014), pp. 509-540 | DOI | Zbl | MR
[Lov17a] Integral canonical models for automorphic vector bundles of abelian type, Algebra Number Theory, Volume 11 (2017) no. 8, pp. 1837-1890 | DOI | Zbl | MR
[Lov17b] Filtered -crystals on Shimura varieties of abelian type, 2017 | arXiv
[LSZ19] Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 10, pp. 3053-3112 | DOI | Zbl | MR
[Ram75] Stable principal bundles on a compact Riemann surface, Math. Ann., Volume 213 (1975), pp. 129-152 | DOI | Zbl | MR
[Ram96a] Moduli for principal bundles over algebraic curves. I, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 3, pp. 301-328 | DOI | Zbl
[Ram96b] Moduli for principal bundles over algebraic curves. II, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 4, pp. 421-449 | DOI | Zbl | MR
[Sim92] Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci. (1992) no. 75, pp. 5-95 | Zbl | DOI | Numdam | MR
[Sim97] The Hodge filtration on nonabelian cohomology, Algebraic geometry (Santa Cruz, 1995) (Proc. Sympos. Pure Math.), Volume 62, Part 2, American Mathematical Society, Providence, RI, 1997, pp. 217-281 | DOI | Zbl | MR
[Sim10] Iterated destabilizing modifications for vector bundles with connection, Vector bundles and complex geometry (Contemp. Math.), Volume 522, American Mathematical Society, Providence, RI, 2010, pp. 183-206 | DOI | Zbl
[Tu93] Semistable bundles over an elliptic curve, Adv. Math., Volume 98 (1993) no. 1, pp. 1-26 | DOI | Zbl | MR
[Yan22] A comparison of generalized opers and -opers, Indian J. Pure Appl. Math., Volume 53 (2022) no. 3, pp. 760-773 | DOI | Zbl | MR
Cité par Sources :





