Commensurators of normal subgroups of lattices
[Commensurateurs de sous-groupes normaux de réseaux]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1099-1122

We study a question of Greenberg-Shalom concerning arithmeticity of discrete subgroups of semisimple Lie groups with dense commensurators. We answer this question positively for normal subgroups of lattices. This generalizes a result of the second author and T. Koberda for certain normal subgroups of arithmetic lattices in SO(n,1) and SU(n,1).

Nous étudions une question de Greenberg-Shalom concernant l’arithméticité des sous-groupes discrets des groupes de Lie semi-simples avec des commensurateurs denses. Nous répondons positivement à cette question pour les sous-groupes normaux des réseaux. Ceci généralise un résultat du second auteur et de T. Koberda pour certains sous-groupes normaux de réseaux arithmétiques dans SO(n,1) et SU(n,1).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.274
Classification : 22E40, 20A05, 20G15
Keywords: Discrete subgroups of Lie groups, commensurated subgroups, locally compact groups
Mots-clés : Sous-groupes discrets de groupes de Lie, sous-groupes commensurables, groupes localement compacts

Fisher, David  1   ; Mj, Mahan  2   ; van Limbeek, Wouter  3

1 Department of Mathematics, Rice University, 6100 Main St MS 136, Houston, TX 77005, USA
2 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, Maharashtra 400005, India
3 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607-7045, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1099_0,
     author = {Fisher, David and Mj, Mahan and van Limbeek, Wouter},
     title = {Commensurators of normal subgroups of lattices},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1099--1122},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.274},
     mrnumber = {4812042},
     zbl = {07928812},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.274/}
}
TY  - JOUR
AU  - Fisher, David
AU  - Mj, Mahan
AU  - van Limbeek, Wouter
TI  - Commensurators of normal subgroups of lattices
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1099
EP  - 1122
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.274/
DO  - 10.5802/jep.274
LA  - en
ID  - JEP_2024__11__1099_0
ER  - 
%0 Journal Article
%A Fisher, David
%A Mj, Mahan
%A van Limbeek, Wouter
%T Commensurators of normal subgroups of lattices
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1099-1122
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.274/
%R 10.5802/jep.274
%G en
%F JEP_2024__11__1099_0
Fisher, David; Mj, Mahan; van Limbeek, Wouter. Commensurators of normal subgroups of lattices. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1099-1122. doi: 10.5802/jep.274

[Abe74] Abels, H. Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen, Math. Z., Volume 135 (1973/74), pp. 325-361 | DOI | Zbl | MR

[BFMvL] Brody, N.; Fisher, D.; Mj, M.; van Limbeek, W. Irreducible subgroups of products, a question of Shalom, and implications (in preparation)

[BM96] Burger, M.; Mozes, S. CAT (-1)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc., Volume 9 (1996) no. 1, pp. 57-93 | DOI | Zbl | MR

[BT73] Borel, A.; Tits, J. Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2), Volume 97 (1973), pp. 499-571 | DOI | Zbl | MR

[CdlH16] Cornulier, Yves; de la Harpe, Pierre Metric geometry of locally compact groups, EMS Tracts in Math., 25, European Mathematical Society (EMS), Zürich, 2016 | DOI | MR

[CS14] Creutz, D.; Shalom, Y. A normal subgroup theorem for commensurators of lattices, Groups Geom. Dyn., Volume 8 (2014) no. 3, pp. 789-810 | DOI | Zbl | MR

[CW74] Casselman, W.; Wigner, D. Continuous cohomology and a conjecture of Serre’s, Invent. Math., Volume 25 (1974), pp. 199-211 | DOI | Zbl | MR

[FLSS18] Fisher, D.; Larsen, M.; Spatzier, R.; Stover, M. Character varieties and actions on products of trees, Israel J. Math., Volume 225 (2018) no. 2, pp. 889-907 | DOI | Zbl | MR

[Gre74] Greenberg, L. Commensurable groups of Moebius transformations, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) (Ann. of Math. Studies), Volume 79, Princeton Univ. Press, Princeton, NJ (1974), pp. 227-237 | Zbl | MR

[Hu52] Hu, S. Cohomology theory in topological groups, Michigan Math. J., Volume 1 (1952), pp. 11-59 | Zbl | MR

[KK22] Kim, S.-H.; Koberda, T. Non-freeness of groups generated by two parabolic elements with small rational parameters, Michigan Math. J., Volume 71 (2022) no. 4, pp. 809-833 | DOI | Zbl | MR

[KM21] Koberda, T.; Mj, M. Commutators, commensurators, and PSL 2 (), J. Topology, Volume 14 (2021) no. 3, pp. 861-876 | DOI | Zbl | MR

[KM24] Koberda, T.; Mj, M. Commensurators of thin normal subgroups and abelian quotients, Algebraic Geom. Topol., Volume 24 (2024) no. 4, pp. 2149-2170 | DOI | Zbl | MR

[LLR11] Leininger, C.; Long, D.; Reid, A. Commensurators of finitely generated nonfree Kleinian groups, Algebraic Geom. Topol., Volume 11 (2011) no. 1, pp. 605-624 | DOI | Zbl | MR

[LU69] Lyndon, R. C.; Ullman, J. L. Groups generated by two parabolic linear fractional transformations, Canad. J. Math., Volume 21 (1969), pp. 1388-1403 | DOI | Zbl | MR

[Lub89] Lubotzky, A. Trees and discrete subgroups of Lie groups over local fields, Bull. Amer. Math. Soc. (N.S.), Volume 20 (1989) no. 1, pp. 27-30 | DOI | Zbl | MR

[LZ01] Lubotzky, A.; Zimmer, R. Arithmetic structure of fundamental groups and actions of semisimple Lie groups, Topology, Volume 40 (2001) no. 4, pp. 851-869 | DOI | Zbl | MR

[Mar91] Margulis, G. Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3), 17, Springer-Verlag, Berlin, 1991 | MR

[Mj11] Mj, M. On discreteness of commensurators, Geom. Topol., Volume 15 (2011) no. 1, pp. 331-350 | DOI | Zbl | MR

[Mon01] Monod, N. Continuous bounded cohomology of locally compact groups, Lect. Notes in Math., 1758, Springer-Verlag, Berlin, 2001 | DOI | MR

[Pla69a] Platonov, V. P. The problem of strong approximation and the Kneser-Tits hypothesis for algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat., Volume 33 (1969), pp. 1211-1219

[Pla69b] Platonov, V. P. The problem of strong approximation and the Kneser-Tits hypothesis for algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat., Volume 33 (1969), pp. 1211-1219

[PR94] Platonov, V. P.; Rapinchuk, A. Algebraic groups and number theory, Pure and Applied Math., 139, Academic Press, Inc., Boston, MA, 1994

[Pra77] Prasad, G. Strong approximation for semi-simple groups over function fields, Ann. of Math. (2), Volume 105 (1977) no. 3, pp. 553-572 | DOI | MR

[Pra82] Prasad, G. Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. math. France, Volume 110 (1982) no. 2, pp. 197-202 | Numdam | Zbl | DOI | MR

[Rag89] Raghunathan, M. S. Discrete subgroups of algebraic groups over local fields of positive characteristics, Proc. Indian Acad. Sci. Math. Sci., Volume 99 (1989) no. 2, pp. 127-146 | Zbl | DOI | MR

[SW13] Shalom, Y.; Willis, G. Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity, Geom. Funct. Anal., Volume 23 (2013) no. 5, pp. 1631-1683 | DOI | Zbl | MR

[Tit64] Tits, J. Algebraic and abstract simple groups, Ann. of Math. (2), Volume 80 (1964), pp. 313-329 | DOI | Zbl | MR

[Ven87] Venkataramana, T. N. Zariski dense subgroups of arithmetic groups, J. Algebra, Volume 108 (1987) no. 2, pp. 325-339 | DOI | Zbl | MR

[Ven88] Venkataramana, T. N. On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math., Volume 92 (1988) no. 2, pp. 255-306 | DOI | Zbl | MR

[Wig73] Wigner, D. Algebraic cohomology of topological groups, Trans. Amer. Math. Soc., Volume 178 (1973), pp. 83-93 | DOI | Zbl | MR

Cité par Sources :