Wasserstein geometry and Ricci curvature bounds for Poisson spaces
[Géométrie de Wasserstein et minoration de la courbure de Ricci pour les espaces de Poisson]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 957-1010

We study the geometry of Poisson point processes from the point of view of optimal transport and Ricci lower bounds. We construct a Riemannian structure on the space of point processes and the associated distance 𝒲 that corresponds to the Benamou–Brenier variational formula. Our main tool is a non-local continuity equation formulated with the difference operator. The closure of the domain of the relative entropy is a complete geodesic space, when endowed with 𝒲. The geometry of this non-local infinite-dimensional space is analogous to that of spaces with positive Ricci curvature. Among others: (a) the Ornstein–Uhlenbeck semi-group is the gradient flow of the relative entropy; (b) the Poisson space has an entropic Ricci curvature bounded from below by 1; (c) 𝒲 satisfies an HWI inequality.

Nous étudions la géométrie des processus ponctuels de Poisson à travers le prisme du transport optimal et de la minoration de la courbure de Ricci. Nous construisons une structure riemannienne sur l’espace des processus ponctuels et la distance associée 𝒲 qui concorde avec la formulation variationnelle de Benamou–Brenier. Notre analyse repose sur une équation de continuité non locale définie à l’aide de l’opérateur de différence. La fermeture du domaine de l’entropie relative, équipé de 𝒲, est un espace géodésique complet. La géométrie de cet espace non local et de dimension infinie est analogue à celle des espaces à courbure de Ricci strictement positive. Entre autres : (a) le semi-groupe d’Ornstein–Uhlenbeck est le flot du gradient de l’entropie relative ; (b) l’espace de Poisson a une courbure de Ricci entropique minorée par 1 ; (c) 𝒲 satisfait une inégalité HWI.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.270
Classification : 60G55, 49Q22, 30L99
Keywords: Poisson point process, optimal transportation, Wasserstein distance, gradient flows, Ricci curvature
Mots-clés : Processus ponctuel de Poisson, transport optimal, distance de Wasserstein, flots de gradient, courbure de Ricci

Dello Schiavo, Lorenzo  1   ; Herry, Ronan  2   ; Suzuki, Kohei  3

1 Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
2 IRMAR, Université de Rennes, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
3 Department of Mathematical Science, Durham University, Science Laboratories, South Road, DH1 3LE, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__957_0,
     author = {Dello Schiavo, Lorenzo and Herry, Ronan and Suzuki, Kohei},
     title = {Wasserstein geometry and {Ricci~curvature~bounds} for {Poisson} spaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {957--1010},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.270},
     mrnumber = {4791996},
     zbl = {07912281},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.270/}
}
TY  - JOUR
AU  - Dello Schiavo, Lorenzo
AU  - Herry, Ronan
AU  - Suzuki, Kohei
TI  - Wasserstein geometry and Ricci curvature bounds for Poisson spaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 957
EP  - 1010
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.270/
DO  - 10.5802/jep.270
LA  - en
ID  - JEP_2024__11__957_0
ER  - 
%0 Journal Article
%A Dello Schiavo, Lorenzo
%A Herry, Ronan
%A Suzuki, Kohei
%T Wasserstein geometry and Ricci curvature bounds for Poisson spaces
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 957-1010
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.270/
%R 10.5802/jep.270
%G en
%F JEP_2024__11__957_0
Dello Schiavo, Lorenzo; Herry, Ronan; Suzuki, Kohei. Wasserstein geometry and Ricci curvature bounds for Poisson spaces. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 957-1010. doi: 10.5802/jep.270

[AES16] Ambrosio, L.; Erbar, M.; Savaré, G. Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces, Nonlinear Anal., Volume 137 (2016), pp. 77-134 | DOI | Zbl | MR

[AG13] Ambrosio, L.; Gigli, N. A User’s guide to optimal transport, Modelling and optimisation of flows on networks (Lect. Notes in Math.), Springer, 2013 | DOI

[AGS08] Ambrosio, L.; Gigli, N.; Savaré, G. Gradient flows in metric spaces and in the space of probability measures, Lectures in Math. ETH Zürich, Birkhäuser Verlag, 2008 | DOI | MR

[AGS14a] Ambrosio, L.; Gigli, N.; Savaré, G. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | Zbl | MR

[AGS14b] Ambrosio, L.; Gigli, N.; Savaré, G. Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | Zbl | MR

[AKR98] Albeverio, S.; Kondratiev, Yu. G.; Röckner, M. Analysis and geometry on configuration spaces, J. Funct. Anal., Volume 154 (1998) no. 2, pp. 444-500 | DOI | Zbl | MR

[BGL14] Bakry, D.; Gentil, Ivan; Ledoux, Michel Analysis and geometry of Markov diffusion operators, Grundlehren Math. Wissen., 348, Springer, 2014 | DOI | MR

[BH91] Bouleau, Nicolas; Hirsch, Francis Dirichlet forms and analysis on Wiener space, De Gruyter Studies in Math., 14, Walter de Gruyter & Co., Berlin, 1991 | DOI | MR

[Bog07] Bogachev, V. I. Measure theory. Vol. I, II, Springer-Verlag, 2007 | DOI | MR

[Bou69] Bourbaki, N. Éléments de mathématique. Intégration. Chapitre 9, Actualités Scientifiques et Industrielles, 1343, Hermann, Paris, 1969 | DOI | MR

[Bou71] Bourbaki, N. Éléments de mathématique. Topologie générale. Chap. 1 à 4, Hermann, Paris, 1971 | DOI

[Bou74] Bourbaki, N. Éléments de mathématique. Topologie générale. Chap. 5 à 10, Hermann, Paris, 1974 | DOI | MR

[Bou81] Bourbaki, N. Éléments de mathématique. Espaces vectoriels topologiques. Chap. 1 à 5, Masson, Paris, 1981 | DOI

[BÉ85] Bakry, D.; Émery, M. Diffusions hypercontractives, Séminaire de probabilités XIX (Lect. Notes in Math.), Volume 1123, Springer, 1985, pp. 177-206 | DOI | Numdam | Zbl

[Cha04] Chafaï, Djalil Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities, J. Math. Kyoto Univ., Volume 44 (2004) no. 2, pp. 325-363 | DOI | Zbl | MR

[Dal93] Dal Maso, Gianni An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Appl., 8, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI | MR

[DM75] Dellacherie, Claude; Meyer, Paul-André Probabilités et potentiel. Chap. I à IV, Publ. Inst. Math. Univ. Strasbourg, XV, Hermann, Paris, 1975

[DM80] Dellacherie, Claude; Meyer, Paul-André Probabilités et potentiel. Chap. V à VIII: Théorie des martingales, Publ. Inst. Math. Univ. Strasbourg, XVII, Hermann, Paris, 1980 | MR

[DNS09] Dolbeault, Jean; Nazaret, Bruno; Savaré, G. A new class of transport distances between measures, Calc. Var. Partial Differential Equations, Volume 34 (2009) no. 2, pp. 193-231 | DOI | Zbl | MR

[DS58] Dunford, Nelson; Schwartz, Jacob T. Linear operators. Part I. General theory, Pure and Applied Math., VII, Interscience Publ., 1958 | MR

[DS08] Daneri, S.; Savaré, G. Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., Volume 40 (2008) no. 3, pp. 1104-1122 | Zbl | DOI | MR

[DSS21] Dello Schiavo, L.; Suzuki, K. Configuration spaces over singular spaces – I. Dirichlet-form and metric measure geometry, 2021 | arXiv

[DSS22] Dello Schiavo, L.; Suzuki, K. Configuration spaces over singular spaces – II. Curvature, 2022 | arXiv

[DZ10] Dembo, Amir; Zeitouni, Ofer Large deviations techniques and applications, Stochastic Modelling and Applied Probability, 38, Springer-Verlag, 2010 | DOI | MR

[EH15] Erbar, M.; Huesmann, Martin Curvature bounds for configuration spaces, Calc. Var. Partial Differential Equations, Volume 54 (2015) no. 1, pp. 397-430 | DOI | Zbl | MR

[EM12] Erbar, M.; Maas, Jan Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Rational Mech. Anal., Volume 206 (2012) no. 3, pp. 997-1038 | DOI | Zbl | MR

[Erb14] Erbar, M. Gradient flows of the entropy for jump processes, Ann. Inst. H. Poincaré Probab. Statist., Volume 50 (2014) no. 3, pp. 920-945 | DOI | Numdam | Zbl | MR

[FM16] Fathi, Max; Maas, Jan Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Probab., Volume 26 (2016) no. 3, pp. 1774-1806 | DOI | Zbl | MR

[FSS09] Fang, Shizan; Shao, Jinghai; Sturm, Karl-Theodor Wasserstein space over the Wiener space, Probab. Theory Relat. Fields, Volume 146 (2009) no. 3–4, pp. 535-565 | DOI | Zbl | MR

[GHP21] Gozlan, N.; Herry, R.; Peccati, G. Transport inequalities for random point measures, J. Funct. Anal., Volume 281 (2021) no. 9, 109141, 45 pages | DOI | Zbl | MR

[GRST14] Gozlan, N.; Roberto, C.; Samson, P.-M.; Tetali, P. Displacement convexity of entropy and related inequalities on graphs, Probab. Theory Relat. Fields, Volume 160 (2014) no. 1-2, pp. 47-94 | DOI | Zbl | MR

[GRST17] Gozlan, N.; Roberto, C.; Samson, P.-M.; Tetali, P. Kantorovich duality for general transport costs and applications, J. Funct. Anal., Volume 273 (2017) no. 11, pp. 3327-3405 | DOI | Zbl | MR

[GT21] Gigli, N.; Tamanini, Luca Second order differentiation formula on RCD*(K,N) spaces, J. Eur. Math. Soc. (JEMS), Volume 23 (2021) no. 5, pp. 1727-1795 | DOI | Zbl | MR

[Iof77] Ioffe, A. D. On lower semicontinuity of integral functionals. I, SIAM J. Control Optim., Volume 15 (1977), pp. 521-538 | DOI | Zbl | MR

[Kal17] Kallenberg, Olav Random measures, theory and applications, Probability Theory and Stochastic Modelling, 77, Springer, 2017 | DOI | MR

[Kal21] Kallenberg, Olav Foundations of modern probability, Probability Theory and Stochastic Modelling, 99, Springer, 2021 | DOI | MR

[KR61] Krasnosel’skiǐ, M. A.; Rutickiǐ, Ja. B. Convex functions and Orlicz spaces, P. Noordhoff Ltd., 1961 | MR

[Las16] Last, Günter Stochastic analysis for Poisson processes, Stochastic analysis for Poisson point processes (Bocconi Springer Ser.), Volume 7, Bocconi Univ. Press, 2016, pp. 1-36 | DOI | Zbl

[LP18] Last, Günter; Penrose, Mathew Lectures on the Poisson process, Institute of Math. Stat. Textbooks, 7, Cambridge University Press, Cambridge, 2018 | DOI | MR

[LV09] Lott, John; Villani, Cédric Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), Volume 169 (2009) no. 3, pp. 903-991 | DOI | Zbl | MR

[Maa11] Maas, Jan Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., Volume 261 (2011) no. 8, pp. 2250-2292 | DOI | Zbl | MR

[Mie13] Mielke, Alexander Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, Volume 48 (2013) no. 1-2, pp. 1-31 | DOI | Zbl | MR

[MR92] Ma, Zhi-Ming; Röckner, Michael Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer-Verlag, 1992 | DOI | MR

[MS20] Muratori, M.; Savaré, G. Gradient flows and evolution variational inequalities in metric spaces. I: structural properties, J. Funct. Anal., Volume 278 (2020) no. 4, I108347, 67 pages | DOI | Zbl | MR

[Oll09] Ollivier, Y. Ricci curvature of Markov chains on metric spaces, J. Funct. Anal., Volume 256 (2009) no. 3, pp. 810-864 | DOI | Zbl | MR

[OS16] Osada, Hirofumi; Shirai, Tomoyuki Absolute continuity and singularity of palm measures of the Ginibre point process, Probab. Theory Relat. Fields, Volume 165 (2016) no. 3-4, pp. 725-770 | DOI | Zbl | MR

[OV00] Otto, F.; Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400 | DOI | Zbl | MR

[Par67] Parthasarathy, K. R. Probability measures on metric spaces, AMS Chelsea Publishing, Providence, RI, 1967 | DOI | MR

[PRST22] Peletier, Mark A.; Rossi, Riccarda; Savaré, G.; Tse, Oliver Jump processes as generalized gradient flows, Calc. Var. Partial Differential Equations, Volume 61 (2022) no. 1, 33, 85 pages | Zbl | DOI | MR

[RS99] Röckner, Michael; Schied, Alexander Rademacher’s theorem on configuration spaces and applications, J. Funct. Anal., Volume 169 (1999) no. 2, pp. 325-356 | DOI | Zbl | MR

[Sam22] Samson, P.-M. Entropic curvature on graphs along Schrödinger bridges at zero temperature, Probab. Theory Relat. Fields, Volume 184 (2022) no. 3-4, pp. 859-937 | DOI | Zbl | MR

[Stu06] Sturm, Karl-Theodor On the geometry of metric measure spaces. I & II, Acta Math., Volume 196 (2006) no. 1, pp. 65-177 | Zbl | DOI

[Sur84] Surgailis, D. On multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Statist., Volume 3 (1984) no. 2, pp. 217-239 | Zbl | MR

[Suz23] Suzuki, K. Curvature bound of Dyson Brownian motion, 2023 | arXiv

[Vil09] Villani, Cédric Optimal transport. Old and new, Grundlehren Math. Wissen., 338, Springer, 2009 | DOI | MR

[Wu00] Wu, Liming A new modified logarithmic Sobolev inequality for Poisson point processes and several applications, Probab. Theory Relat. Fields, Volume 118 (2000) no. 3, pp. 427-438 | DOI | Zbl | MR

Cité par Sources :