Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3
[Limites quantiques pour les laplaciens sous-riemanniens de contact en dimension 3]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 909-956

On the unit tangent bundle of a compact Riemannian surface, we consider a natural sub-Riemannian Laplacian associated with the canonical contact structure. In the large eigenvalue limit, we study the escape of mass at infinity in the cotangent space of eigenfunctions for hypoelliptic selfadjoint perturbations of this operator. Using semiclassical methods, we show that, in this subelliptic regime, eigenfunctions concentrate on certain quantized level sets along the geodesic flow direction and that they verify invariance properties involving both the geodesic vector field and the perturbation term.

Sur le fibré tangent unitaire d’une surface compacte riemannienne, nous considérons un sous-laplacien riemannien naturel associé à la structure de contact canonique. Dans la limite des grandes valeurs propres et pour des perturbations hypoelliptiques auto-adjointes de cet opérateur, nous étudions la façon dont la masse des fonctions propres s’échappe à l’infini dans l’espace co-tangent. En utilisant des méthodes semi-classiques, nous montrons que, dans ce régime sous-elliptique, les fonctions propres se concentrent sur certains ensembles de niveaux quantifiés le long de la direction du flot géodésique et qu’elles vérifient des propriétés d’invariance impliquant à la fois le champ de vecteurs géodésique et le terme de perturbation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.269
Classification : 58J50, 35H10, 53C17
Keywords: Hypoelliptic operators, semiclassical analysis, contact flows
Mots-clés : Opérateurs hypoelliptiques, analyse semi-classique, flots de contact

Arnaiz, Víctor  1   ; Rivière, Gabriel  2

1 Laboratoire de Mathématiques Jean Leray, Nantes Université, UMR CNRS 6629, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France
2 Laboratoire de Mathématiques Jean Leray, Nantes Université, UMR CNRS 6629, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France & Institut Universitaire de France, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__909_0,
     author = {Arnaiz, V{\'\i}ctor and Rivi\`ere, Gabriel},
     title = {Quantum limits of perturbed {sub-Riemannian} contact {Laplacians} in dimension~3},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {909--956},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.269},
     mrnumber = {4791995},
     zbl = {07912280},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.269/}
}
TY  - JOUR
AU  - Arnaiz, Víctor
AU  - Rivière, Gabriel
TI  - Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 909
EP  - 956
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.269/
DO  - 10.5802/jep.269
LA  - en
ID  - JEP_2024__11__909_0
ER  - 
%0 Journal Article
%A Arnaiz, Víctor
%A Rivière, Gabriel
%T Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 909-956
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.269/
%R 10.5802/jep.269
%G en
%F JEP_2024__11__909_0
Arnaiz, Víctor; Rivière, Gabriel. Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 909-956. doi: 10.5802/jep.269

[AM14] Anantharaman, N.; Macià, F. Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 6, pp. 1253-1288 | DOI | Zbl | MR

[AS23] Arnaiz, V.; Sun, C. Sharp resolvent estimate for the Baouendi-Grushin operator and applications, Comm. Math. Phys., Volume 400 (2023) no. 1, pp. 541-637 | DOI | Zbl | MR

[BR20] Bonthonneau, Y.; Raymond, N. WKB constructions in bidimensional magnetic wells, Math. Res. Lett., Volume 27 (2020) no. 3, pp. 647-663 | DOI | Zbl | MR

[BS22] Burq, N.; Sun, C. Time optimal observability for Grushin Schrödinger equation, Anal. PDE, Volume 15 (2022) no. 6, pp. 1487-1530 | DOI | Zbl | MR

[BVN21] Boil, Grégory; Vu Ngoc, San Long-time dynamics of coherent states in strong magnetic fields, Amer. J. Math., Volume 143 (2021) no. 6, pp. 1747-1789 | Zbl | DOI | MR

[CHT18] Colin de Verdière, Y.; Hillairet, L.; Trélat, E. Spectral asymptotics for sub-Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case, Duke Math. J., Volume 167 (2018) no. 1, pp. 109-174 | DOI | Zbl | MR

[CHT21] Colin de Verdière, Y.; Hillairet, L.; Trélat, E. Spiraling of sub-Riemannian geodesics around the Reeb flow in the 3D contact case, 2021 | arXiv

[Col23] Colin de Verdière, Y. A proof of a trace formula by Richard Melrose, Adv. Nonlinear Stud., Volume 23 (2023) no. 1, 20220054, 13 pages | DOI | Zbl | MR

[DZ19] Dyatlov, S.; Zworski, M. Mathematical theory of scattering resonances, Graduate Studies in Math., 200, American Mathematical Society, Providence, RI, 2019 | DOI | MR

[FK95] Fermanian-Kammerer, C. Mesures semi-classiques et équation de la chaleur, Ph. D. Thesis, Université Paris-Sud Orsay (1995)

[FK00] Fermanian-Kammerer, C. Mesures semi-classiques 2-microlocales, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000) no. 7, pp. 515-518 | DOI | Zbl | MR

[FKF21] Fermanian-Kammerer, C.; Fischer, V. Quantum evolution and sub-Laplacian operators on groups of Heisenberg type, J. Spectral Theory, Volume 11 (2021) no. 3, pp. 1313-1367 | DOI | Zbl | MR

[FKL21] Fermanian-Kammerer, C.; Letrouit, C. Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type, J. Éc. polytech. Math., Volume 8 (2021), pp. 1459-1513 | DOI | Numdam | Zbl | MR

[FS74] Folland, G. B.; Stein, E. M. Estimates for the ¯ b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., Volume 27 (1974), pp. 429-522 | Zbl | MR

[GNRV21] Guedes Bonthonneau, Y.; Nguyen, D.T.; Raymond, N.; Vu Ngoc, San Magnetic WKB constructions on surfaces, Rev. Math. Phys., Volume 33 (2021) no. 7, 2150022, 41 pages | Zbl | DOI | MR

[GRV21] Guedes Bonthonneau, Y.; Raymond, N.; Vu Ngoc, S. Exponential localization in 2D pure magnetic wells, Ark. Mat., Volume 59 (2021) no. 1, pp. 53-85 | DOI | Zbl | MR

[HKRV16] Helffer, B.; Kordyukov, Y.; Raymond, N.; Vu Ngoc, S. Magnetic wells in dimension three, Anal. PDE, Volume 9 (2016) no. 7, pp. 1575-1608 | DOI | Zbl | MR

[Hör67] Hörmander, L. Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171 | DOI | Zbl | MR

[LS23] Letrouit, C.; Sun, C. Observability of Baouendi-Grushin-type equations through resolvent estimates, J. Inst. Math. Jussieu, Volume 22 (2023) no. 2, pp. 541-579 | DOI | Zbl | MR

[Mel85] Melrose, R. B. The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math., Volume 44 (1984/85), pp. 134-182 | DOI | Zbl | MR

[Mil96] Miller, L. Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales, Ph. D. Thesis, École polytechnique (1996)

[Mor22] Morin, L. A semiclassical Birkhoff normal form for symplectic magnetic wells, J. Spectral Theory, Volume 12 (2022) no. 2, pp. 459-496 | DOI | Zbl | MR

[Mor24] Morin, L. A semiclassical Birkhoff normal form for constant-rank magnetic fields, Anal. PDE, Volume 17 (2024) no. 5, pp. 1593-1632 | DOI | Zbl | MR

[Nie96] Nier, F. A semi-classical picture of quantum scattering, Ann. Sci. École Norm. Sup. (4), Volume 29 (1996) no. 2, pp. 149-183 | DOI | Numdam | Zbl | MR

[PSU23] Paternain, G. P.; Salo, M.; Uhlmann, G. Geometric inverse problems—with emphasis on two dimensions, Cambridge Studies in Advanced Math., 204, Cambridge University Press, Cambridge, 2023 | DOI | MR

[RS72] Reed, M.; Simon, B. Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972 | MR

[RS75] Reed, M.; Simon, B. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York-London, 1975 | MR

[RS76] Rothschild, L. P.; Stein, E. M. Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976) no. 3-4, pp. 247-320 | DOI | Zbl | MR

[Rum94] Rumin, M. Differential forms on contact manifolds, J. Differential Geom., Volume 39 (1994) no. 2, pp. 281-330 | Zbl | MR

[RV15] Raymond, N.; Vu Ngoc, S. Geometry and spectrum in 2D magnetic wells, Ann. Inst. Fourier (Grenoble), Volume 65 (2015) no. 1, pp. 137-169 | DOI | Numdam | Zbl | MR

[Tay20] Taylor, M. Microlocal Weyl formula on contact manifolds, Comm. Partial Differential Equations, Volume 45 (2020) no. 5, pp. 392-413 | Zbl | DOI | MR

[Zwo12] Zworski, M. Semiclassical analysis, Graduate Studies in Math., 138, American Mathematical Society, Providence, RI, 2012 | DOI | MR

Cité par Sources :