[Doubles b-fibrations et désingularisation de la transformée en rayons X sur les variétés à bord strictement convexe]
We study the mapping properties of the X-ray transform and its adjoint on spaces of conormal functions on Riemannian manifolds with strictly convex boundary. After desingularizing the double fibration, and expressing the X-ray transform and its adjoint using b-fibrations operations, we employ tools related to Melrose’s pushforward theorem to describe the mapping properties of these operators on various classes of polyhomogeneous functions, with special focus to computing how leading order coefficients are transformed. The appendix explains that a naive use of the pushforward theorem leads to a suboptimal result with non-sharp index sets. Our improved results are obtained by closely inspecting Mellin functions which arise in the process, showing that certain coefficients vanish. This recovers some sharp results known by other methods. A number of consequences for the mapping properties of the X-ray transform and its normal operator(s) follow.
Nous étudions les propriétés fonctionnelles de la transformée en rayons X et de son adjointe dans les espaces conormaux, sur les variétés riemanniennes a bord strictement convexe. Après une désingularisation préalable de la double fibration sous-jacente en une double b-fibration, nous exprimons les deux opérateurs étudiés comme des compositions d’intégration le long des fibres et de précompositions par des b-fibrations. Nous utilisons ensuite des techniques reliées aux théorèmes d’intégration le long des fibres et de précomposition de Melrose pour en déduire l’action de ces opérateurs sur des espaces de fonctions polyhomogènes conormales, décrivant notamment comment les développements ainsi que les termes principaux sont transformés. Nous expliquons dans l’appendice qu’une application naïve du théorème d’intégration le long des fibres donne une surestimation des ensembles d’indices qui ne permet pas d’obtenir la précision de certains résultats existant dans la littérature. Notre approche retrouve cette précision et la généralise, en inspectant de plus près les fonctionnelles de Mellin qui entrent en jeu, et en montrant l’annulation de certains coefficients. Nous discutons de quelques applications des résultats principaux, concernant la transformation en rayons X et ses opérateurs normaux associés.
Accepté le :
Publié le :
DOI : 10.5802/jep.266
Keywords: Geodesic X-ray transform, mapping properties, pushforward theorem, polyhomogeneous conormal spaces, b-fibration
Mots-clés : Transformée en rayons X, propriétés fonctionnelles, espaces polyhomogènes, théorème d’intégration le long des fibres, b-fibration
Mazzeo, Rafe  1 ; Monard, François  2
CC-BY 4.0
@article{JEP_2024__11__809_0,
author = {Mazzeo, Rafe and Monard, Fran\c{c}ois},
title = {Double b-fibrations and desingularization of the {X-ray} transform on manifolds with strictly convex boundary},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {809--847},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.266},
mrnumber = {4779134},
zbl = {07894207},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.266/}
}
TY - JOUR AU - Mazzeo, Rafe AU - Monard, François TI - Double b-fibrations and desingularization of the X-ray transform on manifolds with strictly convex boundary JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 809 EP - 847 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.266/ DO - 10.5802/jep.266 LA - en ID - JEP_2024__11__809_0 ER -
%0 Journal Article %A Mazzeo, Rafe %A Monard, François %T Double b-fibrations and desingularization of the X-ray transform on manifolds with strictly convex boundary %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 809-847 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.266/ %R 10.5802/jep.266 %G en %F JEP_2024__11__809_0
Mazzeo, Rafe; Monard, François. Double b-fibrations and desingularization of the X-ray transform on manifolds with strictly convex boundary. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 809-847. doi: 10.5802/jep.266
[1] Renormalizing curvature integrals on Poincaré-Einstein manifolds, Adv. Math., Volume 221 (2009) no. 1, pp. 140-169 | DOI | Zbl | MR
[2] Ricci flow and volume renormalizability, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 15 (2019), 057, 21 pages | DOI | Zbl | MR
[3] Local X-ray transform on asymptotically hyperbolic manifolds via projective compactification, New Zealand J. Math., Volume 52 (2021 [2021–2022]), pp. 733-763 | DOI | Zbl | MR
[4] Conformal invariants, Élie Cartan et les mathématiques d’aujourd’hui (Lyon, 1984) (Astérisque), Société Mathématique de France, Paris, 1985, pp. 95-116 | Zbl | Numdam | MR
[5] Differential forms and integral geometry, Funkcional. Anal. i Priložen., Volume 3 (1969) no. 2, pp. 24-40 | Zbl | MR
[6] Basics of the -calculus, Approaches to singular analysis (Berlin, 1999) (Oper. Theory Adv. Appl.), Volume 125, Birkhäuser, Basel, 2001, pp. 30-84 | DOI | Zbl | MR
[7] Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math., Volume 101 (1979) no. 4, pp. 915-955 | DOI | Zbl | MR
[8] Integral geometry and Radon transforms, Springer, New York, 2011 | DOI | MR
[9] On the microlocal analysis of the geodesic X-ray transform with conjugate points, J. Differential Geometry, Volume 108 (2018) no. 3, pp. 459-494 | DOI | Zbl | MR
[10] The analysis of linear partial differential operators. III. Pseudo-differential operators, Classics in Mathematics, Springer, Berlin, 2007 | DOI | MR
[11] New range theorems for the dual Radon transform, Trans. Amer. Math. Soc., Volume 353 (2001) no. 3, pp. 1089-1102 | DOI | Zbl | MR
[12] Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal., Volume 15 (1984) no. 3, pp. 621-633 | DOI | Zbl | MR
[13] An inverse problem for renormalized area: determining the bulk metric with minimal surfaces, 2024 | arXiv
[14] Elliptic theory of differential edge operators. I, Comm. Partial Differential Equations, Volume 16 (1991) no. 10, pp. 1615-1664 | DOI | Zbl | MR
[15] Elliptic theory of differential edge operators, II: Boundary value problems, Indiana Univ. Math. J., Volume 63 (2014) no. 6, pp. 1911-1955 | DOI | Zbl | MR
[16] Calculus of conormal distributions on manifolds with corners, Internat. Math. Res. Notices (1992) no. 3, pp. 51-61 | DOI | Zbl | MR
[17] The Atiyah-Patodi-Singer index theorem, Research Notes in Math., 4, A K Peters, Ltd., Wellesley, MA, 1993 | DOI | MR
[18] The -isomorphism property for a class of singularly-weighted x-ray transforms, Inverse Problems, Volume 39 (2023) no. 2, 024001, 24 pages | DOI | Zbl | MR
[19] Functional relations, sharp mapping properties, and regularization of the X-ray transform on disks of constant curvature, SIAM J. Math. Anal., Volume 52 (2020) no. 6, pp. 5675-5702 | Zbl | DOI | MR
[20] Efficient nonparametric Bayesian inference for -ray transforms, Ann. Statist., Volume 47 (2019) no. 2, pp. 1113-1147 | DOI | Zbl | MR
[21] Consistent inversion of noisy non-Abelian X-ray transforms, Comm. Pure Appl. Math., Volume 74 (2021) no. 5, pp. 1045-1099 | DOI | Zbl | MR
[22] Statistical guarantees for Bayesian uncertainty quantification in nonlinear inverse problems with Gaussian process priors, Ann. Statist., Volume 49 (2021) no. 6, pp. 3255-3298 | DOI | Zbl | MR
[23] The geodesic ray transform on Riemannian surfaces with conjugate points, Comm. Math. Phys., Volume 337 (2015) no. 3, pp. 1491-1513 | DOI | Zbl | MR
[24] Geometric inverse problems—with emphasis on two dimensions, Cambridge Studies in Advanced Math., 204, Cambridge University Press, Cambridge, 2023 | DOI | MR
[25] Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. (2), Volume 161 (2005) no. 2, pp. 1093-1110 | DOI | Zbl | MR
[26] Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates, Inverse problems and applications: inside out. II (Math. Sci. Res. Inst. Publ.), Volume 60, Cambridge Univ. Press, Cambridge, 2013, pp. 487-528 | Zbl
[27] Analytic continuation and high energy estimates for the resolvent of the Laplacian on forms on asymptotically hyperbolic spaces, Adv. Math., Volume 306 (2017), pp. 1019-1045 | DOI | Zbl | MR
Cité par Sources :





