[Sur l’approximation polynomiale uniforme]
Let be a positive integer and a transcendental real number. We are interested in bounding from above the uniform exponent of polynomial approximation . Davenport and Schmidt’s original 1969 inequality was improved recently, and the best upper bound known to date is for each . In this paper, we develop new techniques leading us to the improved upper bound .
Soient un entier strictement positif et un nombre réel transcendant. Nous cherchons à borner supérieurement l’exposant uniforme d’approximation polynomiale . Établie par Davenport et Schmidt en 1969, l’inégalité , a été améliorée pour la première fois récemment, et la meilleure borne supérieure connue à ce jour est pour tout . Dans ce papier, nous développons de nouvelles techniques qui nous permettent d’obtenir la borne supérieure améliorée .
Accepté le :
Publié le :
DOI : 10.5802/jep.265
Keywords: Exponent of Diophantine approximation, heights, uniform polynomial approximation
Mots-clés : Exposants d’approximation diophantienne, hauteurs, approximation polynomiale uniforme
Poëls, Anthony  1
CC-BY 4.0
@article{JEP_2024__11__769_0,
author = {Po\"els, Anthony},
title = {On uniform polynomial approximation},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {769--807},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.265},
mrnumber = {4779133},
zbl = {07894206},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.265/}
}
Poëls, Anthony. On uniform polynomial approximation. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 769-807. doi: 10.5802/jep.265
[1] A Gel’fond type criterion in degree two, Acta Arith., Volume 111 (2004) no. 1, pp. 97-103 | DOI | Zbl | MR
[2] Algebra I, Springer-Verlag, New York, 1989
[3] Sequences of Diophantine approximations, J. Number Theory, Volume 6 (1974) no. 1, pp. 11-21 | DOI | Zbl | MR
[4] Approximation by algebraic numbers, Cambridge Tracts in Math., 160, Cambridge University Press, Cambridge, 2004 | DOI | MR
[5] Exponents of Diophantine approximation, Dynamics and analytic number theory (Badziahin, Dzmitry; Gorodnik, Alexander; Peyerimhoff, Norbert, eds.) (London Math. Soc. Lect. Note Ser.), Volume 437, Cambridge University Press, Cambridge, 2016, pp. 96-135 | DOI | Zbl
[6] Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 3, pp. 773-804 | DOI | Numdam | Zbl | MR
[7] On transfer inequalities in Diophantine approximation, II, Math. Z., Volume 265 (2010) no. 2, pp. 249-262 | DOI | Zbl | MR
[8] On uniform approximation to real numbers, Acta Arith., Volume 175 (2016) no. 3, pp. 255-268 | Zbl | MR
[9] Approximation to real numbers by quadratic irrationals, Acta Arith., Volume 13 (1967) no. 2, pp. 169-176 | Zbl | DOI | MR
[10] Approximation to real numbers by algebraic integers, Acta Arith., Volume 15 (1969) no. 4, pp. 393-416 | DOI | Zbl | MR
[11] Methods of algebraic geometry, Cambridge University Press, Cambridge, 1947
[12] Simultaneous rational approximation to the successive powers of a real number, Indag. Math. (N.S.), Volume 14 (2003) no. 1, pp. 45-53 | DOI | Zbl | MR
[13] An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation, Mathematika, Volume 66 (2020) no. 3, pp. 818-854 | DOI | Zbl | MR
[14] Best Diophantine approximations: the phenomenon of degenerate dimension, Surveys in geometry and number theory: reports on contemporary Russian mathematics (London Math. Soc. Lecture Note Ser.), Volume 338, Cambridge University Press, Cambridge, 2007, pp. 158-182 | Zbl | DOI
[15] Exponents of Diophantine approximation in dimension 2 for numbers of Sturmian type, Math. Z., Volume 294 (2020) no. 3, pp. 951-993 | Zbl | DOI | MR
[16] Exponents of Diophantine approximation in dimension two for a general class of numbers, Mosc. J. Comb. Number Theory, Volume 11 (2022) no. 1, pp. 37-69 | DOI | Zbl | MR
[17] Simultaneous rational approximation to successive powers of a real number, Trans. Amer. Math. Soc., Volume 375 (2022) no. 09, pp. 6385-6415 | Zbl | MR
[18] Parametric geometry of numbers over a number field and extension of scalars, Bull. Soc. math. France, Volume 151 (2023), pp. 257-303 | Zbl | MR
[19] Parametric geometry of numbers, Ph. D. Thesis, University of Ottawa (2019) (https://ruor.uottawa.ca/handle/10393/38871)
[20] Approximation simultanée d’un nombre et de son carré, Comptes Rendus Mathématique, Volume 336 (2003) no. 1, pp. 1-6 | Numdam | Zbl
[21] Approximation to real numbers by cubic algebraic integers I, Proc. London Math. Soc. (3), Volume 88 (2004) no. 1, pp. 42-62 | Zbl | MR
[22] On two exponents of approximation related to a real number and its square, Canad. J. Math., Volume 59 (2007) no. 1, pp. 211-224 | Zbl | MR
[23] Some notes on the regular graph defined by Schmidt and Summerer and uniform approximation, JP J. Algebra Number Theory Appl., Volume 39 (2017) no. 2, pp. 115-150 | DOI | Zbl
[24] Uniform Diophantine approximation and best approximation polynomials, Acta Arith., Volume 185 (2018) no. 3, pp. 249-274 | DOI | Zbl | MR
[25] Uniform dual approximation to Veronese curves in small dimension, 2024 | arXiv
[26] Diophantine approximation, Lect. Notes in Math., 785, Springer-Verlag, Berlin, 1980 | Numdam | MR
[27] Diophantine approximations and Diophantine equations, Lect. Notes in Math., 1467, Springer-Verlag, Berlin, 1991 | DOI | MR
Cité par Sources :





