On uniform polynomial approximation
[Sur l’approximation polynomiale uniforme]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 769-807

Let n be a positive integer and ξ a transcendental real number. We are interested in bounding from above the uniform exponent of polynomial approximation ω ^ n (ξ). Davenport and Schmidt’s original 1969 inequality ω ^ n (ξ)2n-1 was improved recently, and the best upper bound known to date is 2n-2 for each n10. In this paper, we develop new techniques leading us to the improved upper bound 2n-1 3n 1/3 +𝒪(1).

Soient n un entier strictement positif et ξ un nombre réel transcendant. Nous cherchons à borner supérieurement l’exposant uniforme d’approximation polynomiale ω ^ n (ξ). Établie par Davenport et Schmidt en 1969, l’inégalité ω ^ n (ξ)2n-1, a été améliorée pour la première fois récemment, et la meilleure borne supérieure connue à ce jour est 2n-2 pour tout n10. Dans ce papier, nous développons de nouvelles techniques qui nous permettent d’obtenir la borne supérieure améliorée 2n-1 3n 1/3 +𝒪(1).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.265
Classification : 11J13, 11J82
Keywords: Exponent of Diophantine approximation, heights, uniform polynomial approximation
Mots-clés : Exposants d’approximation diophantienne, hauteurs, approximation polynomiale uniforme

Poëls, Anthony  1

1 Universite Claude Bernard Lyon 1, Institut Camille Jordan UMR 5208, 69622 Villeurbanne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__769_0,
     author = {Po\"els, Anthony},
     title = {On uniform polynomial approximation},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {769--807},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.265},
     mrnumber = {4779133},
     zbl = {07894206},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.265/}
}
TY  - JOUR
AU  - Poëls, Anthony
TI  - On uniform polynomial approximation
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 769
EP  - 807
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.265/
DO  - 10.5802/jep.265
LA  - en
ID  - JEP_2024__11__769_0
ER  - 
%0 Journal Article
%A Poëls, Anthony
%T On uniform polynomial approximation
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 769-807
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.265/
%R 10.5802/jep.265
%G en
%F JEP_2024__11__769_0
Poëls, Anthony. On uniform polynomial approximation. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 769-807. doi: 10.5802/jep.265

[1] Arbour, Benoit; Roy, Damien A Gel’fond type criterion in degree two, Acta Arith., Volume 111 (2004) no. 1, pp. 97-103 | DOI | Zbl | MR

[2] Bourbaki, Nicolas Algebra I, Springer-Verlag, New York, 1989

[3] Brownawell, W Dale Sequences of Diophantine approximations, J. Number Theory, Volume 6 (1974) no. 1, pp. 11-21 | DOI | Zbl | MR

[4] Bugeaud, Yann Approximation by algebraic numbers, Cambridge Tracts in Math., 160, Cambridge University Press, Cambridge, 2004 | DOI | MR

[5] Bugeaud, Yann Exponents of Diophantine approximation, Dynamics and analytic number theory (Badziahin, Dzmitry; Gorodnik, Alexander; Peyerimhoff, Norbert, eds.) (London Math. Soc. Lect. Note Ser.), Volume 437, Cambridge University Press, Cambridge, 2016, pp. 96-135 | DOI | Zbl

[6] Bugeaud, Yann; Laurent, Michel Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 3, pp. 773-804 | DOI | Numdam | Zbl | MR

[7] Bugeaud, Yann; Laurent, Michel On transfer inequalities in Diophantine approximation, II, Math. Z., Volume 265 (2010) no. 2, pp. 249-262 | DOI | Zbl | MR

[8] Bugeaud, Yann; Schleischitz, Johannes On uniform approximation to real numbers, Acta Arith., Volume 175 (2016) no. 3, pp. 255-268 | Zbl | MR

[9] Davenport, H; Schmidt, Wolfgang Approximation to real numbers by quadratic irrationals, Acta Arith., Volume 13 (1967) no. 2, pp. 169-176 | Zbl | DOI | MR

[10] Davenport, Harold; Schmidt, Wolfgang Approximation to real numbers by algebraic integers, Acta Arith., Volume 15 (1969) no. 4, pp. 393-416 | DOI | Zbl | MR

[11] Hodge, W.V.D.; Pedoe, D. Methods of algebraic geometry, Cambridge University Press, Cambridge, 1947

[12] Laurent, Michel Simultaneous rational approximation to the successive powers of a real number, Indag. Math. (N.S.), Volume 14 (2003) no. 1, pp. 45-53 | DOI | Zbl | MR

[13] Marnat, Antoine; Moshchevitin, Nikolay An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation, Mathematika, Volume 66 (2020) no. 3, pp. 818-854 | DOI | Zbl | MR

[14] Moshchevitin, Nikolai G Best Diophantine approximations: the phenomenon of degenerate dimension, Surveys in geometry and number theory: reports on contemporary Russian mathematics (London Math. Soc. Lecture Note Ser.), Volume 338, Cambridge University Press, Cambridge, 2007, pp. 158-182 | Zbl | DOI

[15] Poëls, Anthony Exponents of Diophantine approximation in dimension 2 for numbers of Sturmian type, Math. Z., Volume 294 (2020) no. 3, pp. 951-993 | Zbl | DOI | MR

[16] Poëls, Anthony Exponents of Diophantine approximation in dimension two for a general class of numbers, Mosc. J. Comb. Number Theory, Volume 11 (2022) no. 1, pp. 37-69 | DOI | Zbl | MR

[17] Poëls, Anthony; Roy, Damien Simultaneous rational approximation to successive powers of a real number, Trans. Amer. Math. Soc., Volume 375 (2022) no. 09, pp. 6385-6415 | Zbl | MR

[18] Poëls, Anthony; Roy, Damien Parametric geometry of numbers over a number field and extension of scalars, Bull. Soc. math. France, Volume 151 (2023), pp. 257-303 | Zbl | MR

[19] Rivard-Cooke, Martin Parametric geometry of numbers, Ph. D. Thesis, University of Ottawa (2019) (https://ruor.uottawa.ca/handle/10393/38871)

[20] Roy, Damien Approximation simultanée d’un nombre et de son carré, Comptes Rendus Mathématique, Volume 336 (2003) no. 1, pp. 1-6 | Numdam | Zbl

[21] Roy, Damien Approximation to real numbers by cubic algebraic integers I, Proc. London Math. Soc. (3), Volume 88 (2004) no. 1, pp. 42-62 | Zbl | MR

[22] Roy, Damien On two exponents of approximation related to a real number and its square, Canad. J. Math., Volume 59 (2007) no. 1, pp. 211-224 | Zbl | MR

[23] Schleischitz, Johannes Some notes on the regular graph defined by Schmidt and Summerer and uniform approximation, JP J. Algebra Number Theory Appl., Volume 39 (2017) no. 2, pp. 115-150 | DOI | Zbl

[24] Schleischitz, Johannes Uniform Diophantine approximation and best approximation polynomials, Acta Arith., Volume 185 (2018) no. 3, pp. 249-274 | DOI | Zbl | MR

[25] Schleischitz, Johannes Uniform dual approximation to Veronese curves in small dimension, 2024 | arXiv

[26] Schmidt, Wolfgang M Diophantine approximation, Lect. Notes in Math., 785, Springer-Verlag, Berlin, 1980 | Numdam | MR

[27] Schmidt, Wolfgang M Diophantine approximations and Diophantine equations, Lect. Notes in Math., 1467, Springer-Verlag, Berlin, 1991 | DOI | MR

Cité par Sources :