Smooth limits of plane curves of prime degree and Markov numbers
[Limites lisses de courbes planes de degré premier et nombres de Markov]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 683-731

In dimension at least 3, Mori asked if every smooth proper limit of a family of prime degree hypersurfaces is still a hypersurface. In dimensions 1 and 2, this is not the case. For example, it is well known that quintic plane curves can degenerate to hyperelliptic curves, and Horikawa constructed smooth limits of quintic surfaces that do not embed in 3 . In this paper, we propose a conjecture explaining the one-dimensional examples using Hacking and Prokhorov’s work on -Gorenstein limits of the projective plane and prove the conjecture for degree 5. As a consequence of the first conjecture, we conjecture that, if p is a prime number that is not a Markov number, any smooth projective limit of plane curves of degree p is a plane curve. We prove this conjecture for degree 7 curves and provide evidence for the conjecture by exhibiting non-planar smooth limits of families of degree d curves for any d that is a multiple of a Markov number.

En dimension 3 au moins, Mori a demandé si toute limite lisse propre d’une famille d’hypersurfaces de degré premier est toujours une hypersurface. En dimensions 1 et 2, ce n’est pas le cas. Par exemple, il est bien connu que les courbes planes quintiques peuvent dégénérer en des courbes hyperelliptiques, et Horikawa a construit des limites lisses de surfaces quintiques qui ne se plongent pas dans 3 . Dans cet article, nous proposons une conjecture expliquant les exemples unidimensionnels en utilisant les travaux de Hacking et Prokhorov sur les limites -Gorenstein du plan projectif et nous prouvons la conjecture pour le degré 5. Comme conséquence de la première conjecture, nous conjecturons que, si p est un nombre premier qui n’est pas un nombre de Markov, toute limite projective lisse de courbes planes de degré p est une courbe plane. Nous prouvons cette conjecture pour les courbes de degré 7 et justifions la conjecture en exhibant des limites lisses non planes de familles de courbes de degré d pour tout entier d qui est un multiple d’un nombre de Markov.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.263
Classification : 14H10, 14H50, 14J10
Keywords: Moduli of curves, hypersurfaces, moduli of stable pairs, Markov numbers
Mots-clés : Espaces de modules de courbes, hypersurfaces, espaces de modules de paires stables, nombres de Markov

DeVleming, Kristin  1   ; Stapleton, David  2

1 Department of Mathematics, University of Massachusetts, Amherst, MA 01003, USA
2 Mathematics Department, University of Michigan, Ann Arbor, MI 48109, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__683_0,
     author = {DeVleming, Kristin and Stapleton, David},
     title = {Smooth limits of plane curves of prime~degree and {Markov} numbers},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {683--731},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.263},
     mrnumber = {4767016},
     zbl = {07881509},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.263/}
}
TY  - JOUR
AU  - DeVleming, Kristin
AU  - Stapleton, David
TI  - Smooth limits of plane curves of prime degree and Markov numbers
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 683
EP  - 731
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.263/
DO  - 10.5802/jep.263
LA  - en
ID  - JEP_2024__11__683_0
ER  - 
%0 Journal Article
%A DeVleming, Kristin
%A Stapleton, David
%T Smooth limits of plane curves of prime degree and Markov numbers
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 683-731
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.263/
%R 10.5802/jep.263
%G en
%F JEP_2024__11__683_0
DeVleming, Kristin; Stapleton, David. Smooth limits of plane curves of prime degree and Markov numbers. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 683-731. doi: 10.5802/jep.263

[1] Ascher, Kenneth; Bejleri, Dori; Inchiostro, Giovanni; Patakfalvi, Zsolt Wall crossing for moduli of stable log pairs, Ann. of Math. (2), Volume 198 (2023) no. 2, pp. 825-866 | DOI | Zbl | MR

[2] Ascher, Kenneth; DeVleming, Kristin; Liu, Yuchen Wall crossing for K‐moduli spaces of plane curves, Proc. London Math. Soc. (3), Volume 128 (2024), e12615 | DOI | MR

[3] Fernández de Bobadilla, Javier; Luengo, Ignacio; Melle Hernández, Alejandro; Némethi, Andras Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair, Real and complex singularities (Trends Math.), Birkhäuser, Basel, 2007, pp. 31-45 | DOI | Zbl

[4] Borodzik, Maciej; Livingston, Charles Heegaard Floer homology and rational cuspidal curves, Forum Math. Sigma, Volume 2 (2014), e28, 23 pages | DOI | Zbl | MR

[5] Brieskorn, Egbert Ein Satz über die komplexen Quadriken, Math. Ann., Volume 155 (1964), pp. 184-193 | DOI | Zbl | MR

[6] Brieskorn, Egbert; Knörrer, Horst Plane algebraic curves, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1986 | DOI | MR

[7] DeVleming, Kristin Moduli of surfaces in 3 , Compositio Math., Volume 158 (2022) no. 6, pp. 1329-1374 | DOI | Zbl | MR

[8] Ferrand, Daniel Conducteur, descente et pincement, Bull. Soc. math. France, Volume 131 (2003) no. 4, pp. 553-585 | DOI | Numdam | Zbl | MR

[9] Fujita, Takao Classification theories of polarized varieties, London Math. Soc. Lect. Note Series, 155, Cambridge University Press, Cambridge, 1990 | DOI | MR

[10] Griffin, Edmond E. Families of quintic surfaces and curves, Compositio Math., Volume 55 (1985) no. 1, pp. 33-62 | Numdam | Zbl | MR

[11] Hacking, Paul Compact moduli of plane curves, Duke Math. J., Volume 124 (2004) no. 2, pp. 213-257 | DOI | Zbl | MR

[12] Hacking, Paul; Prokhorov, Yuri Smoothable del Pezzo surfaces with quotient singularities, Compositio Math., Volume 146 (2010) no. 1, pp. 169-192 | DOI | Zbl | MR

[13] Hassett, Brendan Stable log surfaces and limits of quartic plane curves, Manuscripta Math., Volume 100 (1999) no. 4, pp. 469-487 | DOI | Zbl | MR

[14] Horikawa, Eiji On deformations of quintic surfaces, Proc. Japan Acad., Volume 49 (1973), pp. 377-379 http://projecteuclid.org/euclid.pja/1195519286 | Zbl | MR

[15] Hwang, Jun-Muk Nondeformability of the complex hyperquadric, Invent. Math., Volume 120 (1995) no. 2, pp. 317-338 | DOI | Zbl | MR

[16] Karpov, B. V.; Nogin, D. Yu. Three-block exceptional sets on del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat., Volume 62 (1998) no. 3, pp. 3-38 | DOI | MR

[17] Kobayashi, Shoshichi; Ochiai, Takushiro Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Volume 13 (1973), pp. 31-47 | DOI | Zbl | MR

[18] Kollár, János Maps between local Picard groups, Algebraic Geom., Volume 3 (2016) no. 4, pp. 461-495 | DOI | Zbl | MR

[19] Kollár, János Families of varieties of general type, Cambridge Tracts in Math., 231, Cambridge University Press, Cambridge, 2023 | MR | DOI

[20] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 | DOI | MR

[21] Liu, Tiankai On planar rational cuspidal curves, Ph. D. Thesis, M.I.T., Cambridge (2014) (https://dspace.mit.edu/handle/1721.1/90190)

[22] Manetti, Marco Normal degenerations of the complex projective plane, J. reine angew. Math., Volume 419 (1991), pp. 89-118 | DOI | Zbl | MR

[23] Markoff, A. Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 17 (1880) no. 3, pp. 379-399 | DOI | Zbl

[24] Matsuoka, Takashi; Sakai, Fumio The degree of rational cuspidal curves, Math. Ann., Volume 285 (1989) no. 2, pp. 233-247 | DOI | Zbl | MR

[25] Moe, Torgunn Karoline Rational cuspidal curves, Ph. D. Thesis, Universitetet i Oslo (2008) (https://www.duo.uio.no/handle/10852/10759)

[26] Mori, Shigefumi On a generalization of complete intersections, J. Math. Kyoto Univ., Volume 15 (1975) no. 3, pp. 619-646 | DOI | Zbl | MR

[27] Orevkov, S. Yu. On rational cuspidal curves. I. Sharp estimate for degree via multiplicities, Math. Ann., Volume 324 (2002) no. 4, pp. 657-673 | DOI | Zbl | MR

[28] Ottem, John Christian; Schreieder, Stefan On deformations of quintic and septic hypersurfaces, J. Math. Pures Appl. (9), Volume 135 (2020), pp. 140-158 | DOI | Zbl | MR

[29] Sloane, Neil J. A.; The OEIS Foundation Inc. The on-line encyclopedia of integer sequences, Seq. A178444, 2020 (https://oeis.org/A178444)

[30] Stacks Project Authors The Stacks Project, 2019 (https://stacks.math.columbia.edu)

[31] Zagier, Don On the number of Markoff numbers below a given bound, Math. Comp., Volume 39 (1982) no. 160, pp. 709-723 | DOI | Zbl | MR

Cité par Sources :