[Spirales logarithmiques des fluides parfaits en 2d]
We study logarithmic spiraling solutions to the 2d incompressible Euler equations which solve a nonlinear transport system on . We show that this system is locally well-posed in , , as well as for atomic measures, that is, logarithmic spiral vortex sheets. For logarithmic spiraling solutions, we make an observation that the local circulation of the vorticity around the origin is a strictly monotone quantity of time, which allows for a rather complete characterization of the long-time behavior. We prove global well-posedness for bounded logarithmic spirals as well as data that admit at most logarithmic singularities. We are then able to show a dichotomy in the long time behavior, solutions either blow up (either in finite or infinite time) or completely homogenize. In particular, bounded logarithmic spirals should converge to constant steady states. For logarithmic spiral sheets, the dichotomy is shown to be even more drastic, where only finite time blow up or complete homogenization of the fluid can and does occur.
On étudie les spirales logarithmiques solutions des équations d’Euler incompressibles en deux dimensions d’espace qui résolvent un système de transport non linéaire sur . On montre que ce système est localement bien posé dans , , ainsi que pour les nappes de tourbillon en spirale logarithmique. Pour ces spirales logarithmiques, nous observons que la circulation locale du tourbillon autour de l’origine est strictement monotone en temps, ce qui permet une caractérisation assez complète du comportement en temps long. On démontre le caractère bien posé global des spirales logarithmiques bornées ainsi que pour les données qui admettent au plus des singularités logarithmiques. Nous sommes alors en mesure de montrer une dichotomie dans le comportement en temps long : les solutions explosent (en temps fini ou infini) ou s’homogénéisent complètement. En particulier, les spirales logarithmiques bornées convergent vers des états stationnaires constants. Pour les nappes de tourbillon en spirale logarithmique, la dichotomie est encore plus radicale, où seule l’explosion en temps fini ou l’homogénéisation complète du fluide peuvent se produire et se produisent effectivement.
Accepté le :
Publié le :
DOI : 10.5802/jep.262
Keywords: Logarithmic spirals, perfect fluids, longtime behavior, singularity formation
Mots-clés : Spirales logarithmiques, fluide parfait, comportement en temps long, formation de singularités
Jeong, In-Jee  1 ; Said, Ayman R.  2
CC-BY 4.0
@article{JEP_2024__11__655_0,
author = {Jeong, In-Jee and Said, Ayman R.},
title = {Logarithmic spirals in $2$d perfect fluids},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {655--682},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.262},
mrnumber = {4767015},
zbl = {07881508},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.262/}
}
TY - JOUR AU - Jeong, In-Jee AU - Said, Ayman R. TI - Logarithmic spirals in $2$d perfect fluids JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 655 EP - 682 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.262/ DO - 10.5802/jep.262 LA - en ID - JEP_2024__11__655_0 ER -
Jeong, In-Jee; Said, Ayman R. Logarithmic spirals in $2$d perfect fluids. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 655-682. doi: 10.5802/jep.262
[1] Existence of homogeneous Euler flows of degree , Arch. Rational Mech. Anal., Volume 248 (2024) no. 3, 30, 72 pages | DOI | Zbl | MR
[2] Family of similarity flows with vortex sheets, Phys. Fluids, Volume 14 (1971) no. 2, pp. 231-239 | DOI | Zbl
[3] Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations, Publ. Math. Inst. Hautes Études Sci., Volume 122 (2015) no. 1, pp. 195-300 | DOI | Numdam | Zbl | MR
[4] Helmholtz and Taylor instability, Proc. Sympos. Appl. Math., Volume XIII, American Mathematical Society, Providence, RI, 1962, pp. 55-76 | Zbl | DOI
[5] Existence of nonsymmetric logarithmic spiral vortex sheet solutions to the 2D Euler equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) (2023) (31 p., online) | DOI
[6] Linear instability of symmetric logarithmic spiral vortex sheets, J. Math. Fluid Mech., Volume 26 (2024) no. 2, 21, 27 pages | DOI | Zbl | MR
[7] Well-posedness of logarithmic spiral vortex sheets, J. Differential Equations, Volume 389 (2024), pp. 508-539 | DOI | Zbl | MR
[8] Singularity formation in the incompressible Euler equation in finite and infinite time, EMS Surv. Math. Sci., Volume 10 (2023) no. 1, pp. 1-100 | DOI | Zbl | MR
[9] Ill-posedness for the incompressible Euler equations in critical Sobolev spaces, Ann. PDE, Volume 3 (2017) no. 1, 7 | DOI | Zbl | MR
[10] Symmetries and critical phenomena in fluids, Comm. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 257-316 | DOI | Zbl | MR
[11] On singular vortex patches I: Well-posedness issues, Mem. Amer. Math. Soc., 283, no. 1400, American Mathematical Society, Providence, RI, 2023
[12] On the long-time behavior of scale-invariant solutions to the 2D Euler equation and applications, 2022 | arXiv
[13] Variety of unsymmetric multibranched logarithmic vortex spirals, European J. Appl. Math., Volume 30 (2019) no. 1, pp. 23-38 | DOI | Zbl | MR
[14] Accumulation rates of spiral-like structures in fluid flows, Proc. Roy. Soc. Ser. A, Volume 437 (1992) no. 1900, pp. 391-401 | DOI
[15] Asymptotic behaviour of solutions to the stationary Navier-Stokes equations in two-dimensional exterior domains with zero velocity at infinity, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 2, pp. 229-253 | DOI | Zbl | MR
[16] Generalized scale-invariant solutions to the two-dimensional stationary Navier-Stokes equations, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 955-968 | DOI | Zbl | MR
[17] Spiralförmige Bewegungen zäher Flüssigkeiten, Jahresber. Deutsch. Math.-Verein., Volume 25 (1916), pp. 34-60 | Zbl
[18] Axi-symmetrization near point vortex solutions for the 2D Euler equation, Comm. Pure Appl. Math., Volume 75 (2022) no. 4, pp. 818-891 | DOI | Zbl | MR
[19] Nonlinear inviscid damping near monotonic shear flows, Acta Math., Volume 230 (2023) no. 2, pp. 321-399 | DOI | Zbl | MR
[20] Spiral vortex solution of Birkhoff-Rott equation, Phys. D, Volume 37 (1989) no. 1, pp. 463-473 | DOI | Zbl | MR
[21] Geometric hydrodynamics in open problems, Arch. Rational Mech. Anal., Volume 247 (2023) no. 2, 15, 43 pages | DOI | Zbl | MR
[22] A new exact solution of Navier-Stokes equations, C. R. (Doklady) Acad. Sci. URSS (N.S.), Volume 43 (1944), pp. 286-288 | Zbl | MR
[23] Vorticity and incompressible flow, Cambridge Texts in Applied Math., 27, Cambridge University Press, Cambridge, 2002 | MR
[24] Mathematical theory of incompressible nonviscous fluids, Applied Math. Sciences, 96, Springer-Verlag, New York, 1994 | DOI | MR
[25] Nonlinear inviscid damping for a class of monotone shear flows in a finite channel, Ann. of Math. (2), Volume 199 (2024) no. 3, pp. 1093-1175 | DOI | MR
[26] Über die Entstehung von Wirbeln in der idealen Flüssigkeit, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben, Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck) (1922), pp. 18-33
[27] Vortex tubes, spirals, and large-eddy simulation of turbulence, Tubes, sheets and singularities in fluid dynamics (Zakopane, 2001) (Fluid Mech. Appl.), Volume 71, Kluwer Acad. Publ., Dordrecht, 2002, pp. 171-180 | DOI | Zbl | MR
[28] Diffraction of a weak shock with vortex generation, J. Fluid Mech., Volume 1 (1956) no. 1, p. 111–128 | DOI | Zbl | MR
[29] Vortex dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 1993 | DOI | MR
[30] On the long time behavior of fluid flows, Procedia IUTAM, Volume 7 (2013), pp. 151-160 | DOI
[31] Princeton lectures in analysis, Princeton University Press, Princeton, NJ, 2003
[32] Course notes, 2011
[33] On Landau’s solutions of the Navier-Stokes equations, J. Math. Sci. (New York), Volume 179 (2011) no. 1, pp. 208-228 | DOI | Zbl | MR
[34] Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., Volume 3 (1963), pp. 1032-1066 | MR
Cité par Sources :





