[Fonctions tropicales sur un squelette]
We prove a general finiteness statement for the ordered abelian group of tropical functions on skeleta in Berkovich analytifications of algebraic varieties. Our approach consists in working in the framework of stable completions of algebraic varieties, a model-theoretic version of Berkovich analytifications, for which we prove a similar result, of which the former one is a consequence.
Nous démontrons un résultat général de finitude pour le groupe abélien ordonné des fonctions tropicales sur un squelette dans l’analytifié de Berkovich d’une variété algébrique. Notre approche consiste à travailler dans le cadre des complétés stables de variétés algébriques, une version modèle théorique de l’analytification de Berkovich, pour lesquels nous démontrons un énoncé similaire dont notre résultat est une conséquence.
Accepté le :
Publié le :
DOI : 10.5802/jep.261
Keywords: Berkovich spaces, tropical geometry, skeleta, stable completion, Abhyankar valuations
Mots-clés : Espaces de Berkovich, géométrie tropicale, squelettes, complété stable, valuations d’Abhyankar
Ducros, Antoine  1 ; Hrushovski, Ehud  2 ; Loeser, François  3 ; Ye, Jinhe  4
CC-BY 4.0
@article{JEP_2024__11__613_0,
author = {Ducros, Antoine and Hrushovski, Ehud and Loeser, Fran\c{c}ois and Ye, Jinhe},
title = {Tropical functions on a skeleton},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {613--654},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.261},
mrnumber = {4767014},
zbl = {07881507},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.261/}
}
TY - JOUR AU - Ducros, Antoine AU - Hrushovski, Ehud AU - Loeser, François AU - Ye, Jinhe TI - Tropical functions on a skeleton JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 613 EP - 654 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.261/ DO - 10.5802/jep.261 LA - en ID - JEP_2024__11__613_0 ER -
%0 Journal Article %A Ducros, Antoine %A Hrushovski, Ehud %A Loeser, François %A Ye, Jinhe %T Tropical functions on a skeleton %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 613-654 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.261/ %R 10.5802/jep.261 %G en %F JEP_2024__11__613_0
Ducros, Antoine; Hrushovski, Ehud; Loeser, François; Ye, Jinhe. Tropical functions on a skeleton. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 613-654. doi: 10.5802/jep.261
[Ber99] Smooth -adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | Zbl | MR
[Bey75] Duality theorems for finitely generated vector lattices, Proc. London Math. Soc. (3), Volume 31 (1975), pp. 114-128 | DOI | Zbl | MR
[CHY21] Beautiful pairs, 2021 | arXiv
[CLD17] Formes différentielles réelles et courants sur les espaces de Berkovich, 2017 | arXiv
[Duc12] Espaces de Berkovich, polytopes, squelettes et théorie des modèles, Confluentes Math., Volume 4 (2012) no. 4, 1250007, 57 pages https://cml.centre-mersenne.org/... | DOI | Numdam | Zbl | MR
[Duc13] Les espaces de Berkovich sont modérés (d’après Ehud Hrushovski et François Loeser), Séminaire Bourbaki. Vol. 2011/2012 (Astérisque), Volume 352, Société Mathématique de France, Paris, 2013, pp. 459-507 (Exp. No. 1056) | MR | Zbl
[Duc16] About Hrushovski and Loeser’s work on the homotopy type of Berkovich spaces, Nonarchimedean and tropical geometry (Simons Symp.), Springer, Cham, 2016, pp. 99-131 | MR | DOI | Zbl
[Ele18] Semilinear stars are contractible, Fund. Math., Volume 241 (2018) no. 3, pp. 291-312 | DOI | Zbl | MR
[Gla99] Partially ordered groups, Series in Algebra, 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1999 | DOI | MR
[Gru68] Fibrés vectoriels sur un polydisque ultramétrique, Ann. Sci. École Norm. Sup. (4), Volume 1 (1968), pp. 45-89 | Numdam | Zbl | DOI | MR
[HHM06] Definable sets in algebraically closed valued fields: elimination of imaginaries, J. reine angew. Math., Volume 597 (2006), pp. 175-236 | DOI | Zbl | MR
[HK06] Integration in valued fields, Algebraic geometry and number theory (Progress in Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261-405 | DOI | Zbl
[HK08] The value ring of geometric motivic integration, and the Iwahori Hecke algebra of , Geom. Funct. Anal., Volume 17 (2008) no. 6, pp. 1924-1967 (With an appendix by Nir Avni) | DOI | Zbl | MR
[HL16] Non-archimedean tame topology and stably dominated types, Annals of Math. Studies, 192, Princeton University Press, Princeton, NJ, 2016 | DOI | MR
[Kuh10] Elimination of ramification I: the generalized stability theorem, Trans. Amer. Math. Soc., Volume 362 (2010) no. 11, pp. 5697-5727 | DOI | Zbl | MR
[Ohm89] The Henselian defect for valued function fields, Proc. Amer. Math. Soc., Volume 107 (1989) no. 2, pp. 299-308 | DOI | Zbl | MR
[Ovc02] Max-min representation of piecewise linear functions, Beitr. Algebra Geom., Volume 43 (2002) no. 1, pp. 297-302 | MR | Zbl
[Sim15] A guide to NIP theories, Lect. Notes in Logic, 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015 | DOI | MR
[Tei14] Overweight deformations of affine toric varieties and local uniformization, Valuation theory in interaction (EMS Ser. Congr. Rep.), European Mathematical Society, Zürich, 2014, pp. 474-565 | MR | DOI | Zbl
[Tem04] On local properties of non-Archimedean analytic spaces. II, Israel J. Math., Volume 140 (2004), pp. 1-27 | DOI | Zbl | MR
[Tem10] Stable modification of relative curves, J. Algebraic Geom., Volume 19 (2010) no. 4, pp. 603-677 | DOI | Zbl | MR
Cité par Sources :





