Tropical functions on a skeleton
[Fonctions tropicales sur un squelette]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 613-654

We prove a general finiteness statement for the ordered abelian group of tropical functions on skeleta in Berkovich analytifications of algebraic varieties. Our approach consists in working in the framework of stable completions of algebraic varieties, a model-theoretic version of Berkovich analytifications, for which we prove a similar result, of which the former one is a consequence.

Nous démontrons un résultat général de finitude pour le groupe abélien ordonné des fonctions tropicales sur un squelette dans l’analytifié de Berkovich d’une variété algébrique. Notre approche consiste à travailler dans le cadre des complétés stables de variétés algébriques, une version modèle théorique de l’analytification de Berkovich, pour lesquels nous démontrons un énoncé similaire dont notre résultat est une conséquence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.261
Classification : 03C98, 14G22, 14T20
Keywords: Berkovich spaces, tropical geometry, skeleta, stable completion, Abhyankar valuations
Mots-clés : Espaces de Berkovich, géométrie tropicale, squelettes, complété stable, valuations d’Abhyankar

Ducros, Antoine  1   ; Hrushovski, Ehud  2   ; Loeser, François  3   ; Ye, Jinhe  4

1 Sorbonne Université, Université Paris-Diderot, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Campus Pierre et Marie Curie, case 247, 4 place Jussieu, 75252 Paris cedex 5, France
2 Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter Woodstock Road, Oxford OX2 6GG, UK
3 Institut universitaire de France, Sorbonne Université, Institut de Mathématiques de Jussieu-Paris Rive Gauche CNRS, Campus Pierre et Marie Curie, case 247, 4 place Jussieu, 75252 Paris cedex 5, France
4 Mathematical Institute, University of Oxford, Andrew Wiles Building Radcliffe Observatory Quarter Woodstock Road, Oxford OX2 6GG, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__613_0,
     author = {Ducros, Antoine and Hrushovski, Ehud and Loeser, Fran\c{c}ois and Ye, Jinhe},
     title = {Tropical functions on a skeleton},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {613--654},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.261},
     mrnumber = {4767014},
     zbl = {07881507},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.261/}
}
TY  - JOUR
AU  - Ducros, Antoine
AU  - Hrushovski, Ehud
AU  - Loeser, François
AU  - Ye, Jinhe
TI  - Tropical functions on a skeleton
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 613
EP  - 654
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.261/
DO  - 10.5802/jep.261
LA  - en
ID  - JEP_2024__11__613_0
ER  - 
%0 Journal Article
%A Ducros, Antoine
%A Hrushovski, Ehud
%A Loeser, François
%A Ye, Jinhe
%T Tropical functions on a skeleton
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 613-654
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.261/
%R 10.5802/jep.261
%G en
%F JEP_2024__11__613_0
Ducros, Antoine; Hrushovski, Ehud; Loeser, François; Ye, Jinhe. Tropical functions on a skeleton. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 613-654. doi: 10.5802/jep.261

[Ber99] Berkovich, Vladimir Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | Zbl | MR

[Bey75] Beynon, W. M. Duality theorems for finitely generated vector lattices, Proc. London Math. Soc. (3), Volume 31 (1975), pp. 114-128 | DOI | Zbl | MR

[CHY21] Cubides Kovacsics, P.; Hils, M.; Ye, J. Beautiful pairs, 2021 | arXiv

[CLD17] Chambert-Loir, Antoine; Ducros, Antoine Formes différentielles réelles et courants sur les espaces de Berkovich, 2017 | arXiv

[Duc12] Ducros, A. Espaces de Berkovich, polytopes, squelettes et théorie des modèles, Confluentes Math., Volume 4 (2012) no. 4, 1250007, 57 pages https://cml.centre-mersenne.org/... | DOI | Numdam | Zbl | MR

[Duc13] Ducros, A. Les espaces de Berkovich sont modérés (d’après Ehud Hrushovski et François Loeser), Séminaire Bourbaki. Vol. 2011/2012 (Astérisque), Volume 352, Société Mathématique de France, Paris, 2013, pp. 459-507 (Exp. No. 1056) | MR | Zbl

[Duc16] Ducros, A. About Hrushovski and Loeser’s work on the homotopy type of Berkovich spaces, Nonarchimedean and tropical geometry (Simons Symp.), Springer, Cham, 2016, pp. 99-131 | MR | DOI | Zbl

[Ele18] Eleftheriou, P. Semilinear stars are contractible, Fund. Math., Volume 241 (2018) no. 3, pp. 291-312 | DOI | Zbl | MR

[Gla99] Glass, A. M. W. Partially ordered groups, Series in Algebra, 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1999 | DOI | MR

[Gru68] Gruson, Laurent Fibrés vectoriels sur un polydisque ultramétrique, Ann. Sci. École Norm. Sup. (4), Volume 1 (1968), pp. 45-89 | Numdam | Zbl | DOI | MR

[HHM06] Haskell, Deirdre; Hrushovski, Ehud; Macpherson, Dugald Definable sets in algebraically closed valued fields: elimination of imaginaries, J. reine angew. Math., Volume 597 (2006), pp. 175-236 | DOI | Zbl | MR

[HK06] Hrushovski, E.; Kazhdan, D. Integration in valued fields, Algebraic geometry and number theory (Progress in Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261-405 | DOI | Zbl

[HK08] Hrushovski, E.; Kazhdan, D. The value ring of geometric motivic integration, and the Iwahori Hecke algebra of SL 2 , Geom. Funct. Anal., Volume 17 (2008) no. 6, pp. 1924-1967 (With an appendix by Nir Avni) | DOI | Zbl | MR

[HL16] Hrushovski, E.; Loeser, F. Non-archimedean tame topology and stably dominated types, Annals of Math. Studies, 192, Princeton University Press, Princeton, NJ, 2016 | DOI | MR

[Kuh10] Kuhlmann, F.-V. Elimination of ramification I: the generalized stability theorem, Trans. Amer. Math. Soc., Volume 362 (2010) no. 11, pp. 5697-5727 | DOI | Zbl | MR

[Ohm89] Ohm, J. The Henselian defect for valued function fields, Proc. Amer. Math. Soc., Volume 107 (1989) no. 2, pp. 299-308 | DOI | Zbl | MR

[Ovc02] Ovchinnikov, S. Max-min representation of piecewise linear functions, Beitr. Algebra Geom., Volume 43 (2002) no. 1, pp. 297-302 | MR | Zbl

[Sim15] Simon, P. A guide to NIP theories, Lect. Notes in Logic, 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015 | DOI | MR

[Tei14] Teissier, Bernard Overweight deformations of affine toric varieties and local uniformization, Valuation theory in interaction (EMS Ser. Congr. Rep.), European Mathematical Society, Zürich, 2014, pp. 474-565 | MR | DOI | Zbl

[Tem04] Temkin, Michael On local properties of non-Archimedean analytic spaces. II, Israel J. Math., Volume 140 (2004), pp. 1-27 | DOI | Zbl | MR

[Tem10] Temkin, Michael Stable modification of relative curves, J. Algebraic Geom., Volume 19 (2010) no. 4, pp. 603-677 | DOI | Zbl | MR

Cité par Sources :