A spectral ansatz for the long-time homogenization of the wave equation
[Un ansatz spectral pour l’homogénéisation de l’équation des ondes en temps long]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 523-587

Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present work is a new ansatz for the long-time two-scale expansion inspired by spectral analysis. Based on this spectral ansatz, we extend and refine all previous results in the field, proving homogenization up to optimal timescales with optimal error estimates, and covering all the standard assumptions on heterogeneities (both periodic and stationary random settings).

On considère l’équation des ondes en milieux hétérogènes dans le régime d’homogénéisation. En temps long, l’onde interagit de façon non triviale avec les hétérogénéités, donnant lieu à des effets dispersifs. Le résultat principal de ce travail est un nouvel ansatz pour le développement à deux échelles en temps long, inspiré par une analyse spectrale. Sur la base de cet ansatz spectral, nous étendons et raffinons tous les résultats précédents du domaine : nous obtenons un résultat d’homogénéisation valable jusqu’à l’échelle de temps optimale avec des estimations d’erreur optimales, et nous couvrons à la fois le cas d’hétérogénéités périodiques et aléatoires stationnaires.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.259
Classification : 35B27, 35B40, 35C20, 35L05, 74Q10, 74Q15, 74H40, 35B30, 35P05
Keywords: Wave equation, long-time homogenization, heterogeneous medium, effective equations, two-scale expansions, spectral correctors
Mots-clés : Équation des ondes, homogénéisation en temps long, milieux hétérogènes, équations effectives, développements à deux échelles, correcteurs spectraux

Duerinckx, Mitia  1   ; Gloria, Antoine  2   ; Ruf, Matthias  3

1 Université Libre de Bruxelles, Département de Mathématique, 1050 Brussels, Belgium
2 Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions, 75005 Paris, France & Institut Universitaire de France & Université Libre de Bruxelles, Département de Mathématique, 1050 Brussels, Belgium
3 École Polytechnique Fédérale de Lausanne, Section de mathématiques, 1015 Lausanne, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__523_0,
     author = {Duerinckx, Mitia and Gloria, Antoine and Ruf, Matthias},
     title = {A spectral ansatz for the long-time homogenization of the wave equation},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {523--587},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.259},
     mrnumber = {4722036},
     zbl = {1536.35032},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.259/}
}
TY  - JOUR
AU  - Duerinckx, Mitia
AU  - Gloria, Antoine
AU  - Ruf, Matthias
TI  - A spectral ansatz for the long-time homogenization of the wave equation
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 523
EP  - 587
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.259/
DO  - 10.5802/jep.259
LA  - en
ID  - JEP_2024__11__523_0
ER  - 
%0 Journal Article
%A Duerinckx, Mitia
%A Gloria, Antoine
%A Ruf, Matthias
%T A spectral ansatz for the long-time homogenization of the wave equation
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 523-587
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.259/
%R 10.5802/jep.259
%G en
%F JEP_2024__11__523_0
Duerinckx, Mitia; Gloria, Antoine; Ruf, Matthias. A spectral ansatz for the long-time homogenization of the wave equation. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 523-587. doi: 10.5802/jep.259

[1] Abdulle, Assyr; Pouchon, Timothée Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales, Found. Comput. Math., Volume 20 (2020) no. 6, pp. 1505-1547 | DOI | MR | Zbl

[2] Allaire, G.; Briane, M.; Vanninathan, M. A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures, SeMA J., Volume 73 (2016) no. 3, pp. 237-259 | DOI | MR | Zbl

[3] Allaire, Grégoire; Lamacz-Keymling, Agnes; Rauch, Jeffrey Crime pays; homogenized wave equations for long times, Asymptotic Anal., Volume 128 (2022) no. 3, pp. 295-336 | DOI | MR | Zbl

[4] Armstrong, Scott; Kuusi, Tuomo; Mourrat, Jean-Christophe Quantitative stochastic homogenization and large-scale regularity, Grundlehren Math. Wissen., 352, Springer, Cham, 2019 | DOI | MR

[5] Benoit, Antoine; Gloria, Antoine Long-time homogenization and asymptotic ballistic transport of classical waves, Ann. Sci. École Norm. Sup. (4), Volume 52 (2019) no. 3, pp. 703-759 | DOI | Zbl | MR | Numdam

[6] Bensoussan, Alain; Lions, Jacques-Louis; Papanicolaou, George Asymptotic analysis for periodic structures, Studies in Math. and its Appl., 5, North-Holland Publishing Co., Amsterdam-New York, 1978 | MR

[7] Brahim-Otsmane, S.; Francfort, G. A.; Murat, F. Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl. (9), Volume 71 (1992) no. 3, pp. 197-231 | MR | Zbl

[8] Christov, C. I.; Maugin, G. A.; Velarde, M. G. Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, Volume 54 (1996), pp. 3621-3638 | DOI

[9] Dohnal, T.; Lamacz, A.; Schweizer, B. Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simul., Volume 12 (2014) no. 2, pp. 488-513 | DOI | MR | Zbl

[10] Dohnal, T.; Lamacz, A.; Schweizer, B. Dispersive homogenized models and coefficient formulas for waves in general periodic media, Asymptotic Anal., Volume 93 (2015) no. 1-2, pp. 21-49 | DOI | MR | Zbl

[11] Duerinckx, Mitia; Fischer, Julian; Gloria, Antoine Scaling limit of the homogenization commutator for Gaussian coefficient fields, Ann. Appl. Probab., Volume 32 (2022) no. 2, pp. 1179-1209 | DOI | Zbl | MR

[12] Duerinckx, Mitia; Gloria, Antoine Large-scale dispersive estimates for acoustic operators: homogenization meets localization, 2023 | arXiv

[13] Duerinckx, Mitia; Gloria, Antoine; Otto, Felix The structure of fluctuations in stochastic homogenization, Comm. Math. Phys., Volume 377 (2020) no. 1, pp. 259-306 | DOI | MR | Zbl

[14] Duerinckx, Mitia; Gloria, Antoine; Shirley, Christopher Approximate normal forms via Floquet-Bloch theory: Nehorošev stability for linear waves in quasiperiodic media, Comm. Math. Phys., Volume 383 (2021) no. 2, pp. 633-683 | DOI | Zbl | MR

[15] Duerinckx, Mitia; Otto, Felix Higher-order pathwise theory of fluctuations in stochastic homogenization, Stochastic Partial Differ. Equ. Anal. Comput., Volume 8 (2020) no. 3, pp. 625-692 | DOI | Zbl | MR

[16] Duerinckx, Mitia; Shirley, Christopher A new spectral analysis of stationary random Schrödinger operators, J. Math. Phys., Volume 62 (2021) no. 7, 072106, 50 pages | DOI | Zbl | MR

[17] Gloria, Antoine; Neukamm, Stefan; Otto, Felix A regularity theory for random elliptic operators, Milan J. Math., Volume 88 (2020) no. 1, pp. 99-170 | MR | Zbl | DOI

[18] Gloria, Antoine; Neukamm, Stefan; Otto, Felix Quantitative estimates in stochastic homogenization for correlated coefficient fields, Anal. PDE, Volume 14 (2021) no. 8, pp. 2497-2537 | DOI | Zbl | MR

[19] Gloria, Antoine; Otto, Felix An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., Volume 39 (2011) no. 3, pp. 779-856 | DOI | MR | Zbl

[20] Gloria, Antoine; Otto, Felix Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc. (JEMS), Volume 19 (2017) no. 11, pp. 3489-3548 | DOI | MR | Zbl

[21] Gu, Yu High order correctors and two-scale expansions in stochastic homogenization, Probab. Theory Related Fields, Volume 169 (2017) no. 3-4, pp. 1221-1259 | DOI | MR | Zbl

[22] Kato, Tosio Perturbation theory for linear operators, Classics in Math., Springer-Verlag, Berlin, 1995 | DOI | MR

[23] Lamacz, Agnes Dispersive effective models for waves in heterogeneous media, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 9, pp. 1871-1899 | DOI | MR | Zbl

[24] Pouchon, Timothée Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media, Ph. D. Thesis, EPFL, Lausanne (2017)

[25] Santosa, Fadil; Symes, William W. A dispersive effective medium for wave propagation in periodic composites, SIAM J. Appl. Math., Volume 51 (1991) no. 4, pp. 984-1005 | DOI | MR | Zbl

[26] Schäffner, M.; Schweizer, B. The time horizon for stochastic homogenization of the 1-dimensional wave equation (2023) (Preprint)

Cité par Sources :