[Un ansatz spectral pour l’homogénéisation de l’équation des ondes en temps long]
Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present work is a new ansatz for the long-time two-scale expansion inspired by spectral analysis. Based on this spectral ansatz, we extend and refine all previous results in the field, proving homogenization up to optimal timescales with optimal error estimates, and covering all the standard assumptions on heterogeneities (both periodic and stationary random settings).
On considère l’équation des ondes en milieux hétérogènes dans le régime d’homogénéisation. En temps long, l’onde interagit de façon non triviale avec les hétérogénéités, donnant lieu à des effets dispersifs. Le résultat principal de ce travail est un nouvel ansatz pour le développement à deux échelles en temps long, inspiré par une analyse spectrale. Sur la base de cet ansatz spectral, nous étendons et raffinons tous les résultats précédents du domaine : nous obtenons un résultat d’homogénéisation valable jusqu’à l’échelle de temps optimale avec des estimations d’erreur optimales, et nous couvrons à la fois le cas d’hétérogénéités périodiques et aléatoires stationnaires.
Accepté le :
Publié le :
DOI : 10.5802/jep.259
Keywords: Wave equation, long-time homogenization, heterogeneous medium, effective equations, two-scale expansions, spectral correctors
Mots-clés : Équation des ondes, homogénéisation en temps long, milieux hétérogènes, équations effectives, développements à deux échelles, correcteurs spectraux
Duerinckx, Mitia  1 ; Gloria, Antoine  2 ; Ruf, Matthias  3
CC-BY 4.0
@article{JEP_2024__11__523_0,
author = {Duerinckx, Mitia and Gloria, Antoine and Ruf, Matthias},
title = {A spectral ansatz for the long-time homogenization of the wave equation},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {523--587},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.259},
mrnumber = {4722036},
zbl = {1536.35032},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.259/}
}
TY - JOUR AU - Duerinckx, Mitia AU - Gloria, Antoine AU - Ruf, Matthias TI - A spectral ansatz for the long-time homogenization of the wave equation JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 523 EP - 587 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.259/ DO - 10.5802/jep.259 LA - en ID - JEP_2024__11__523_0 ER -
%0 Journal Article %A Duerinckx, Mitia %A Gloria, Antoine %A Ruf, Matthias %T A spectral ansatz for the long-time homogenization of the wave equation %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 523-587 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.259/ %R 10.5802/jep.259 %G en %F JEP_2024__11__523_0
Duerinckx, Mitia; Gloria, Antoine; Ruf, Matthias. A spectral ansatz for the long-time homogenization of the wave equation. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 523-587. doi: 10.5802/jep.259
[1] Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales, Found. Comput. Math., Volume 20 (2020) no. 6, pp. 1505-1547 | DOI | MR | Zbl
[2] A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures, SeMA J., Volume 73 (2016) no. 3, pp. 237-259 | DOI | MR | Zbl
[3] Crime pays; homogenized wave equations for long times, Asymptotic Anal., Volume 128 (2022) no. 3, pp. 295-336 | DOI | MR | Zbl
[4] Quantitative stochastic homogenization and large-scale regularity, Grundlehren Math. Wissen., 352, Springer, Cham, 2019 | DOI | MR
[5] Long-time homogenization and asymptotic ballistic transport of classical waves, Ann. Sci. École Norm. Sup. (4), Volume 52 (2019) no. 3, pp. 703-759 | DOI | Zbl | MR | Numdam
[6] Asymptotic analysis for periodic structures, Studies in Math. and its Appl., 5, North-Holland Publishing Co., Amsterdam-New York, 1978 | MR
[7] Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl. (9), Volume 71 (1992) no. 3, pp. 197-231 | MR | Zbl
[8] Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, Volume 54 (1996), pp. 3621-3638 | DOI
[9] Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simul., Volume 12 (2014) no. 2, pp. 488-513 | DOI | MR | Zbl
[10] Dispersive homogenized models and coefficient formulas for waves in general periodic media, Asymptotic Anal., Volume 93 (2015) no. 1-2, pp. 21-49 | DOI | MR | Zbl
[11] Scaling limit of the homogenization commutator for Gaussian coefficient fields, Ann. Appl. Probab., Volume 32 (2022) no. 2, pp. 1179-1209 | DOI | Zbl | MR
[12] Large-scale dispersive estimates for acoustic operators: homogenization meets localization, 2023 | arXiv
[13] The structure of fluctuations in stochastic homogenization, Comm. Math. Phys., Volume 377 (2020) no. 1, pp. 259-306 | DOI | MR | Zbl
[14] Approximate normal forms via Floquet-Bloch theory: Nehorošev stability for linear waves in quasiperiodic media, Comm. Math. Phys., Volume 383 (2021) no. 2, pp. 633-683 | DOI | Zbl | MR
[15] Higher-order pathwise theory of fluctuations in stochastic homogenization, Stochastic Partial Differ. Equ. Anal. Comput., Volume 8 (2020) no. 3, pp. 625-692 | DOI | Zbl | MR
[16] A new spectral analysis of stationary random Schrödinger operators, J. Math. Phys., Volume 62 (2021) no. 7, 072106, 50 pages | DOI | Zbl | MR
[17] A regularity theory for random elliptic operators, Milan J. Math., Volume 88 (2020) no. 1, pp. 99-170 | MR | Zbl | DOI
[18] Quantitative estimates in stochastic homogenization for correlated coefficient fields, Anal. PDE, Volume 14 (2021) no. 8, pp. 2497-2537 | DOI | Zbl | MR
[19] An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., Volume 39 (2011) no. 3, pp. 779-856 | DOI | MR | Zbl
[20] Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc. (JEMS), Volume 19 (2017) no. 11, pp. 3489-3548 | DOI | MR | Zbl
[21] High order correctors and two-scale expansions in stochastic homogenization, Probab. Theory Related Fields, Volume 169 (2017) no. 3-4, pp. 1221-1259 | DOI | MR | Zbl
[22] Perturbation theory for linear operators, Classics in Math., Springer-Verlag, Berlin, 1995 | DOI | MR
[23] Dispersive effective models for waves in heterogeneous media, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 9, pp. 1871-1899 | DOI | MR | Zbl
[24] Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media, Ph. D. Thesis, EPFL, Lausanne (2017)
[25] A dispersive effective medium for wave propagation in periodic composites, SIAM J. Appl. Math., Volume 51 (1991) no. 4, pp. 984-1005 | DOI | MR | Zbl
[26] The time horizon for stochastic homogenization of the 1-dimensional wave equation (2023) (Preprint)
Cité par Sources :





