Couplings of Brownian motions with set-valued dual processes on Riemannian manifolds
[Couplage des mouvements browniens avec des processus duaux à valeurs ensembles sur des variétés riemanniennes]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 473-522

The purpose of this paper is to construct a Brownian motion (X t ) t0 taking values in a Riemannian manifold M, together with a compact set-valued process (D t ) t0 such that, at least for small enough D -stopping time τ>0 and conditioned by τ D , the law of X τ is the normalized Lebesgue measure on D τ . This intertwining result is a generalization of Pitman’s theorem. We first construct regular intertwined processes related to Stokes’ theorem. Then using several limiting procedures we construct synchronous intertwined, free intertwined, mirror intertwined processes. The local times of the Brownian motion on the (morphological) skeleton or the boundary of each D t play an important role. Several examples with moving intervals, discs, annuli, symmetric convex sets are investigated.

L’objectif de cet article est de construire un mouvement brownien (X t ) t0 à valeurs dans une variété riemannienne M conjointement avec un processus à valeurs ensembles (D t ) t0 , de telle sorte qu’au moins pour tout temps d’arrêt τ>0 assez petit dans la filtration D engendrée par (D t ) t0 , la loi de X τ conditionnée par τ D est la mesure riemannienne conditionnée sur D τ . Ce résultat d’entrelacement est une généralisation du théorème de Pitman. Nous commençons par construire des processus entrelacés réguliers par le biais du théorème de Stokes. Puis en utilisant différentes procédures de limites, nous construisons des processus entrelacés synchrones, libres et miroirs. Les temps locaux du mouvement brownien sur le squelette (morphologique) ou sur la frontière jouent des rôles importants. Nous étudions plusieurs exemples consistant en des intervalles, des disques, des anneaux et des ensembles convexes symétriques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.258
Classification : 60J60, 60J65, 60H10, 58J65, 53E10, 60J55, 35K93
Keywords: Brownian motions on Riemannian manifolds, intertwining relations, set-valued dual processes, couplings of primal and dual processes, stochastic mean curvature evolutions, boundary and skeleton local times, generalized Pitman theorem
Mots-clés : Mouvements browniens sur des variétés riemanniennes, relations d’entrelacement, processus duaux à valeurs ensembles, couplage de processus primaux et duaux, évolutions par courbure moyenne stochastiques, temps locaux sur le squelette et sur la frontière, généralisation du théorème de Pitman

Arnaudon, Marc  1   ; Coulibaly-Pasquier, Koléhè  2   ; Miclo, Laurent  3

1 Univ. Bordeaux, CNRS, Bordeaux INP, Institut de Mathématiques de Bordeaux, UMR 5251, F-33405, Talence, France
2 Institut Élie Cartan de Lorraine, UMR 7502, Université de Lorraine and CNRS, Boulevard des Aiguillettes, 54506 Vandœuvre-lès-Nancy, France
3 Institut de Mathématiques de Toulouse, UMR 5219, & Toulouse School of Economics, UMR 5314, CNRS and Université de Toulouse, 1, Esplanade de l’Université, F-31080 Toulouse Cedex 06, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__473_0,
     author = {Arnaudon, Marc and Coulibaly-Pasquier, Kol\'eh\`e and Miclo, Laurent},
     title = {Couplings of {Brownian} motions with set-valued dual processes on {Riemannian} manifolds},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {473--522},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.258},
     mrnumber = {4710547},
     zbl = {1534.60100},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.258/}
}
TY  - JOUR
AU  - Arnaudon, Marc
AU  - Coulibaly-Pasquier, Koléhè
AU  - Miclo, Laurent
TI  - Couplings of Brownian motions with set-valued dual processes on Riemannian manifolds
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 473
EP  - 522
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.258/
DO  - 10.5802/jep.258
LA  - en
ID  - JEP_2024__11__473_0
ER  - 
%0 Journal Article
%A Arnaudon, Marc
%A Coulibaly-Pasquier, Koléhè
%A Miclo, Laurent
%T Couplings of Brownian motions with set-valued dual processes on Riemannian manifolds
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 473-522
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.258/
%R 10.5802/jep.258
%G en
%F JEP_2024__11__473_0
Arnaudon, Marc; Coulibaly-Pasquier, Koléhè; Miclo, Laurent. Couplings of Brownian motions with set-valued dual processes on Riemannian manifolds. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 473-522. doi: 10.5802/jep.258

[1] Albano, Paolo On the stability of the cut locus, Nonlinear Anal., Volume 136 (2016), pp. 51-61 | MR | Zbl | DOI

[2] Arnaudon, Marc; Coulibaly-Pasquier, Koléhè; Miclo, Laurent The stochastic renormalized mean curvature flow for planar convex sets, 2023 | arXiv

[3] Arnaudon, Marc; Coulibaly-Pasquier, Koléhè; Miclo, Laurent On the separation cut-off phenomenon for Brownian motions on high dimensional spheres, Bernoulli, Volume 30 (2024) no. 2, pp. 1007-1028 | DOI | MR

[4] Arnaudon, Marc; Li, Xue-Mei Reflected Brownian motion: selection, approximation and linearization, Electron. J. Probab., Volume 22 (2017), 31, 55 pages | DOI | Zbl | MR

[5] Bakry, Dominique; Gentil, Ivan; Ledoux, Michel Analysis and geometry of Markov diffusion operators, Grundlehren Math. Wissen., 348, Springer, Cham, 2014 | DOI | MR

[6] Carmona, Philippe; Petit, Frédérique; Yor, Marc Beta-gamma random variables and intertwining relations between certain Markov processes, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 2, pp. 311-367 | DOI | MR | Zbl

[7] Cervera, Vicente; Mascaró, Francisca; Michor, Peter W. The action of the diffeomorphism group on the space of immersions, Differential Geom. Appl., Volume 1 (1991) no. 4, pp. 391-401 | DOI | MR | Zbl

[8] Coulibaly-Pasquier, Koléhè; Miclo, Laurent On the evolution by duality of domains on manifolds, Mém. Soc. Math. France (N.S.), 171, Société Mathématique de France, Paris, 2021, 110 pages | DOI

[9] Diaconis, Persi; Fill, James Allen Strong stationary times via a new form of duality, Ann. Probab., Volume 18 (1990) no. 4, pp. 1483-1522 | MR | Zbl

[10] Ethier, Stewart N.; Kurtz, Thomas G. Markov processes, Wiley Series in Probability and Math. Statistics, John Wiley & Sons, Inc., New York, 1986 | DOI | MR

[11] Fill, James Allen; Lyzinski, Vince Strong stationary duality for diffusion processes, J. Theoret. Probab., Volume 29 (2016) no. 4, pp. 1298-1338 | DOI | MR | Zbl

[12] Gassiat, Paul; Gess, Benjamin; Lions, Pierre-Louis; Souganidis, Panagiotis E. Long-time behavior of stochastic Hamilton-Jacobi equations, J. Functional Analysis, Volume 286 (2024) no. 4, 110269 | DOI | Zbl | MR

[13] Machida, Motoya Λ-linked coupling for drifting Brownian motions, 2019 | arXiv

[14] Meyer, P.-A.; Zheng, W. A. Tightness criteria for laws of semimartingales, Ann. Inst. H. Poincaré Probab. Statist., Volume 20 (1984) no. 4, pp. 353-372 | MR | Numdam | Zbl

[15] Miclo, Laurent Strong stationary times for one-dimensional diffusions, Ann. Inst. H. Poincaré Probab. Statist., Volume 53 (2017) no. 2, pp. 957-996 | DOI | Zbl | MR

[16] Miclo, Laurent On the construction of measure-valued dual processes, Electron. J. Probab., Volume 25 (2020), 6, 64 pages | DOI | MR | Zbl

[17] Pal, Soumik; Shkolnikov, Mykhaylo Intertwining diffusions and wave equations, 2013 | arXiv

[18] Pitman, J. W. One-dimensional Brownian motion and the three-dimensional Bessel process, Advances in Appl. Probability, Volume 7 (1975) no. 3, pp. 511-526 | DOI | MR | Zbl

[19] Revuz, Daniel; Yor, Marc Continuous martingales and Brownian motion, Grundlehren Math. Wissen., 293, Springer-Verlag, Berlin, 1999 | DOI | MR

[20] Rogers, L. C. G.; Pitman, J. W. Markov functions, Ann. Probab., Volume 9 (1981) no. 4, pp. 573-582 | MR | Zbl

[21] Schilling, René L.; Partzsch, Lothar Brownian motion, De Gruyter Graduate, De Gruyter, Berlin, 2014 | DOI | MR

[22] Stroock, Daniel W.; Varadhan, S. R. Srinivasa Multidimensional diffusion processes, Classics in Math., Springer-Verlag, Berlin, 2006 | MR

[23] Yor, Marc Intertwinings of Bessel processes (1988) (Tech. report no. 174, Department of Statistics, University of California, Berkeley, CA, https://digitalassets.lib.berkeley.edu/sdtr/proof/pdfs/174.pdf)

[24] Yosida, Kōsaku Functional analysis, Classics in Math., Springer-Verlag, Berlin, 1995 | DOI | MR

[25] Zheng, W. A. Tightness results for laws of diffusion processes application to stochastic mechanics, Ann. Inst. H. Poincaré Probab. Statist., Volume 21 (1985) no. 2, pp. 103-124 | MR | Numdam | Zbl

Cité par Sources :