[Couplage des mouvements browniens avec des processus duaux à valeurs ensembles sur des variétés riemanniennes]
The purpose of this paper is to construct a Brownian motion taking values in a Riemannian manifold , together with a compact set-valued process such that, at least for small enough -stopping time and conditioned by , the law of is the normalized Lebesgue measure on . This intertwining result is a generalization of Pitman’s theorem. We first construct regular intertwined processes related to Stokes’ theorem. Then using several limiting procedures we construct synchronous intertwined, free intertwined, mirror intertwined processes. The local times of the Brownian motion on the (morphological) skeleton or the boundary of each play an important role. Several examples with moving intervals, discs, annuli, symmetric convex sets are investigated.
L’objectif de cet article est de construire un mouvement brownien à valeurs dans une variété riemannienne conjointement avec un processus à valeurs ensembles , de telle sorte qu’au moins pour tout temps d’arrêt assez petit dans la filtration engendrée par , la loi de conditionnée par est la mesure riemannienne conditionnée sur . Ce résultat d’entrelacement est une généralisation du théorème de Pitman. Nous commençons par construire des processus entrelacés réguliers par le biais du théorème de Stokes. Puis en utilisant différentes procédures de limites, nous construisons des processus entrelacés synchrones, libres et miroirs. Les temps locaux du mouvement brownien sur le squelette (morphologique) ou sur la frontière jouent des rôles importants. Nous étudions plusieurs exemples consistant en des intervalles, des disques, des anneaux et des ensembles convexes symétriques.
Accepté le :
Publié le :
DOI : 10.5802/jep.258
Keywords: Brownian motions on Riemannian manifolds, intertwining relations, set-valued dual processes, couplings of primal and dual processes, stochastic mean curvature evolutions, boundary and skeleton local times, generalized Pitman theorem
Mots-clés : Mouvements browniens sur des variétés riemanniennes, relations d’entrelacement, processus duaux à valeurs ensembles, couplage de processus primaux et duaux, évolutions par courbure moyenne stochastiques, temps locaux sur le squelette et sur la frontière, généralisation du théorème de Pitman
Arnaudon, Marc  1 ; Coulibaly-Pasquier, Koléhè  2 ; Miclo, Laurent  3
CC-BY 4.0
@article{JEP_2024__11__473_0,
author = {Arnaudon, Marc and Coulibaly-Pasquier, Kol\'eh\`e and Miclo, Laurent},
title = {Couplings of {Brownian} motions with set-valued dual processes on {Riemannian} manifolds},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {473--522},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.258},
mrnumber = {4710547},
zbl = {1534.60100},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.258/}
}
TY - JOUR AU - Arnaudon, Marc AU - Coulibaly-Pasquier, Koléhè AU - Miclo, Laurent TI - Couplings of Brownian motions with set-valued dual processes on Riemannian manifolds JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 473 EP - 522 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.258/ DO - 10.5802/jep.258 LA - en ID - JEP_2024__11__473_0 ER -
%0 Journal Article %A Arnaudon, Marc %A Coulibaly-Pasquier, Koléhè %A Miclo, Laurent %T Couplings of Brownian motions with set-valued dual processes on Riemannian manifolds %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 473-522 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.258/ %R 10.5802/jep.258 %G en %F JEP_2024__11__473_0
Arnaudon, Marc; Coulibaly-Pasquier, Koléhè; Miclo, Laurent. Couplings of Brownian motions with set-valued dual processes on Riemannian manifolds. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 473-522. doi: 10.5802/jep.258
[1] On the stability of the cut locus, Nonlinear Anal., Volume 136 (2016), pp. 51-61 | MR | Zbl | DOI
[2] The stochastic renormalized mean curvature flow for planar convex sets, 2023 | arXiv
[3] On the separation cut-off phenomenon for Brownian motions on high dimensional spheres, Bernoulli, Volume 30 (2024) no. 2, pp. 1007-1028 | DOI | MR
[4] Reflected Brownian motion: selection, approximation and linearization, Electron. J. Probab., Volume 22 (2017), 31, 55 pages | DOI | Zbl | MR
[5] Analysis and geometry of Markov diffusion operators, Grundlehren Math. Wissen., 348, Springer, Cham, 2014 | DOI | MR
[6] Beta-gamma random variables and intertwining relations between certain Markov processes, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 2, pp. 311-367 | DOI | MR | Zbl
[7] The action of the diffeomorphism group on the space of immersions, Differential Geom. Appl., Volume 1 (1991) no. 4, pp. 391-401 | DOI | MR | Zbl
[8] On the evolution by duality of domains on manifolds, Mém. Soc. Math. France (N.S.), 171, Société Mathématique de France, Paris, 2021, 110 pages | DOI
[9] Strong stationary times via a new form of duality, Ann. Probab., Volume 18 (1990) no. 4, pp. 1483-1522 | MR | Zbl
[10] Markov processes, Wiley Series in Probability and Math. Statistics, John Wiley & Sons, Inc., New York, 1986 | DOI | MR
[11] Strong stationary duality for diffusion processes, J. Theoret. Probab., Volume 29 (2016) no. 4, pp. 1298-1338 | DOI | MR | Zbl
[12] Long-time behavior of stochastic Hamilton-Jacobi equations, J. Functional Analysis, Volume 286 (2024) no. 4, 110269 | DOI | Zbl | MR
[13] -linked coupling for drifting Brownian motions, 2019 | arXiv
[14] Tightness criteria for laws of semimartingales, Ann. Inst. H. Poincaré Probab. Statist., Volume 20 (1984) no. 4, pp. 353-372 | MR | Numdam | Zbl
[15] Strong stationary times for one-dimensional diffusions, Ann. Inst. H. Poincaré Probab. Statist., Volume 53 (2017) no. 2, pp. 957-996 | DOI | Zbl | MR
[16] On the construction of measure-valued dual processes, Electron. J. Probab., Volume 25 (2020), 6, 64 pages | DOI | MR | Zbl
[17] Intertwining diffusions and wave equations, 2013 | arXiv
[18] One-dimensional Brownian motion and the three-dimensional Bessel process, Advances in Appl. Probability, Volume 7 (1975) no. 3, pp. 511-526 | DOI | MR | Zbl
[19] Continuous martingales and Brownian motion, Grundlehren Math. Wissen., 293, Springer-Verlag, Berlin, 1999 | DOI | MR
[20] Markov functions, Ann. Probab., Volume 9 (1981) no. 4, pp. 573-582 | MR | Zbl
[21] Brownian motion, De Gruyter Graduate, De Gruyter, Berlin, 2014 | DOI | MR
[22] Multidimensional diffusion processes, Classics in Math., Springer-Verlag, Berlin, 2006 | MR
[23] Intertwinings of Bessel processes (1988) (Tech. report no. 174, Department of Statistics, University of California, Berkeley, CA, https://digitalassets.lib.berkeley.edu/sdtr/proof/pdfs/174.pdf)
[24] Functional analysis, Classics in Math., Springer-Verlag, Berlin, 1995 | DOI | MR
[25] Tightness results for laws of diffusion processes application to stochastic mechanics, Ann. Inst. H. Poincaré Probab. Statist., Volume 21 (1985) no. 2, pp. 103-124 | MR | Numdam | Zbl
Cité par Sources :





