[Concentration de masse dans des fonctionnelles intégrales d’ordre rééchelonnées]
We consider first order local minimization problems of the form under a mass constraint . We prove that the minimal energy function is always concave, and that relevant rescalings of the energy, depending on a small parameter , -converge towards the -mass, defined for atomic measures as . We also consider Lagrangians depending on , as well as space-inhomogeneous Lagrangians and -masses. Our result holds under mild assumptions on , and covers in particular -masses in any dimension for exponents above a critical threshold, and all concave -masses in dimension . Our result yields in particular the concentration of Cahn-Hilliard fluids into droplets, and is related to the approximation of branched transport by elliptic energies.
Nous considérons des problèmes de minimisation locaux d’ordre de la forme sous contrainte de masse . Nous prouvons que la fonction d’énergie minimale est toujours concave, et que des rééchelonnements appropriés de l’énergie, dépendant d’un petit paramètre , -convergent vers la -masse, définie pour les mesures atomiques par . Nous considérons également des lagrangiens dépendant de , et des lagrangiens et -masses spatialement inhomogènes. Notre résultat est valable sous de faibles hypothèses sur , et couvre les -masses en toute dimension pour des exposants au-dessus d’un seuil critique, et toutes les -masses concaves en dimension . Notre résultat donne en particulier la concentration des fluides de Cahn-Hilliard en gouttelettes, et est lié à l’approximation du transport branché par des énergies elliptiques.
Accepté le :
Publié le :
DOI : 10.5802/jep.257
Keywords: $\Gamma $-convergence, semicontinuity, integral functionals, convergence of measures, concentration-compactness, Cahn-Hilliard fluids, branched transport
Mots-clés : $\Gamma $-convergence, semi-continuité, fonctionnelles intégrales, convergence des mesures, concentration-compacité, fluides de Cahn-Hilliard, transport branché
Monteil, Antonin  1 ; Pegon, Paul  2
CC-BY 4.0
@article{JEP_2024__11__431_0,
author = {Monteil, Antonin and Pegon, Paul},
title = {Mass concentration in rescaled~first~order~integral functionals},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {431--472},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.257},
mrnumber = {4710546},
zbl = {07811896},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.257/}
}
TY - JOUR AU - Monteil, Antonin AU - Pegon, Paul TI - Mass concentration in rescaled first order integral functionals JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 431 EP - 472 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.257/ DO - 10.5802/jep.257 LA - en ID - JEP_2024__11__431_0 ER -
%0 Journal Article %A Monteil, Antonin %A Pegon, Paul %T Mass concentration in rescaled first order integral functionals %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 431-472 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.257/ %R 10.5802/jep.257 %G en %F JEP_2024__11__431_0
Monteil, Antonin; Pegon, Paul. Mass concentration in rescaled first order integral functionals. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 431-472. doi: 10.5802/jep.257
[AFP00] Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs, Oxford University Press, Oxford, New York, 2000 | DOI | MR
[AG99] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A, Volume 129 (1999) no. 1, pp. 1-17 | DOI | Zbl | MR
[BB90] New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal., Volume 15 (1990) no. 7, pp. 679-692 | DOI | Zbl | MR
[BB93] Relaxation for a class of nonconvex functionals defined on measures, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 10 (1993) no. 3, pp. 345-361 | DOI | Zbl | Numdam | MR
[BBH17] Ginzburg-Landau vortices, Modern Birkhäuser Classics, Springer International Publishing, Cham, 2017 | DOI | MR
[BCM09] Optimal transportation networks: Models and theory, Lect. Notes in Math., Springer-Verlag, Berlin Heidelberg, 2009 | DOI | MR
[BDS96] Transitions de phases avec un potentiel dégénéré à l’infini, application à l’équilibre de petites gouttes, C. R. Acad. Sci. Paris Sér. I Math., Volume 323 (1996) no. 9, pp. 1103-1108 | Zbl | MR
[BPP12] Analysis of nematic liquid crystals with disclination lines, Arch. Rational Mech. Anal., Volume 205 (2012) no. 3, pp. 795-826 | DOI | MR | Zbl
[Bra02] Gamma-convergence for beginners, Oxford Lect. Series in Math. and its Appl., Oxford University Press, Oxford, 2002 | DOI | MR
[But89] Semicontinuity, relaxation and integral representation in the calculus of variations, Longman Scientific & Technical; New York: John Wiley & Sons, Harlow, 1989 | MR
[BZ88] Minimal rearrangements of Sobolev functions, J. reine angew. Math., Volume 384 (1988), pp. 153-179 | Zbl | MR
[CDRMS17] On the lower semicontinuous envelope of functionals defined on polyhedral chains, Nonlinear Anal., Volume 163 (2017), pp. 201-215 | DOI | MR | Zbl
[DPH03] Size minimization and approximating problems, Calc. Var. Partial Differential Equations, Volume 17 (2003) no. 4, pp. 405-442 | DOI | MR | Zbl
[Dub98] Problèmes de perturbations singulières avec un potentiel dégénéré a l’infini, Thèse de Doctorat, Toulon (1998)
[Fed59] Curvature measures, Trans. Amer. Math. Soc., Volume 93 (1959) no. 3, pp. 418-491 | DOI | MR | Zbl
[Fle66] Flat chains over a finite coefficient group, Trans. Amer. Math. Soc., Volume 121 (1966) no. 1, pp. 160-186 | DOI | MR | Zbl
[Mar14] Profile decomposition for sequences of Borel measures, 2014 | arXiv
[MM77] Un esempio di -convergenza, Boll. Un. Mat. Ital. B (5), Volume 14 (1977), p. 285–299 | Zbl | MR
[Mon15] Elliptic approximations of singular energies under divergence constraint, Ph. D. Thesis, Université Paris-Saclay (2015)
[Mon17] Uniform estimates for a Modica–Mortola type approximation of branched transportation, ESAIM Control Optim. Calc. Var., Volume 23 (2017) no. 1, pp. 309-335 | DOI | Zbl | MR | Numdam
[Nir59] On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 13 (1959) no. 2, pp. 115-162 | MR | Numdam | Zbl
[OS11] A Modica-Mortola approximation for branched transport and applications, Arch. Rational Mech. Anal., Volume 201 (2011) no. 1, pp. 115-142 | DOI | Zbl | MR
[PSZ99] A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. (9), Volume 78 (1999) no. 8, pp. 769-789 | DOI | MR | Zbl
[RV73] Convex functions, Pure and Applied Math., 57, Academic Press, 1973 | MR
[San15] Optimal transport for applied mathematicians, Progress in nonlinear differential equations and their applications, 87, Springer International Publishing, Cham, 2015 | DOI | MR
[ST00] Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 897-923 | MR | Zbl
[Wir19] Phase field models for two-dimensional branched transportation problems, Calc. Var. Partial Differential Equations, Volume 58 (2019) no. 5, 164, 31 pages | DOI | MR | Zbl
Cité par Sources :





