Mass concentration in rescaled first order integral functionals
[Concentration de masse dans des fonctionnelles intégrales d’ordre 1 rééchelonnées]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 431-472

We consider first order local minimization problems of the form min N f(u,u) under a mass constraint N u=m. We prove that the minimal energy function H(m) is always concave, and that relevant rescalings of the energy, depending on a small parameter ε, Γ-converge towards the H-mass, defined for atomic measures i m i δ x i as i H(m i ). We also consider Lagrangians depending on ε, as well as space-inhomogeneous Lagrangians and H-masses. Our result holds under mild assumptions on f, and covers in particular α-masses in any dimension N2 for exponents α above a critical threshold, and all concave H-masses in dimension N=1. Our result yields in particular the concentration of Cahn-Hilliard fluids into droplets, and is related to the approximation of branched transport by elliptic energies.

Nous considérons des problèmes de minimisation locaux d’ordre 1 de la forme min N f(u,u) sous contrainte de masse N u=m. Nous prouvons que la fonction d’énergie minimale H(m) est toujours concave, et que des rééchelonnements appropriés de l’énergie, dépendant d’un petit paramètre ε, Γ-convergent vers la H-masse, définie pour les mesures atomiques i m i δ x i par i H(m i ). Nous considérons également des lagrangiens dépendant de ε, et des lagrangiens et H-masses spatialement inhomogènes. Notre résultat est valable sous de faibles hypothèses sur f, et couvre les α-masses en toute dimension N2 pour des exposants α au-dessus d’un seuil critique, et toutes les H-masses concaves en dimension N=1. Notre résultat donne en particulier la concentration des fluides de Cahn-Hilliard en gouttelettes, et est lié à l’approximation du transport branché par des énergies elliptiques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.257
Classification : 28A33, 49J45, 46E35, 49Q20, 76T99, 49Q22, 49J10
Keywords: $\Gamma $-convergence, semicontinuity, integral functionals, convergence of measures, concentration-compactness, Cahn-Hilliard fluids, branched transport
Mots-clés : $\Gamma $-convergence, semi-continuité, fonctionnelles intégrales, convergence des mesures, concentration-compacité, fluides de Cahn-Hilliard, transport branché

Monteil, Antonin  1   ; Pegon, Paul  2

1 Université Paris-Est Créteil Val-de-Marne, LAMA, 61 avenue du Général de Gaulle, 94010 Créteil, France
2 Université Paris-Dauphine, CEREMADE & INRIA Paris, MOKAPLAN, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__431_0,
     author = {Monteil, Antonin and Pegon, Paul},
     title = {Mass concentration in rescaled~first~order~integral functionals},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {431--472},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.257},
     mrnumber = {4710546},
     zbl = {07811896},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.257/}
}
TY  - JOUR
AU  - Monteil, Antonin
AU  - Pegon, Paul
TI  - Mass concentration in rescaled first order integral functionals
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 431
EP  - 472
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.257/
DO  - 10.5802/jep.257
LA  - en
ID  - JEP_2024__11__431_0
ER  - 
%0 Journal Article
%A Monteil, Antonin
%A Pegon, Paul
%T Mass concentration in rescaled first order integral functionals
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 431-472
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.257/
%R 10.5802/jep.257
%G en
%F JEP_2024__11__431_0
Monteil, Antonin; Pegon, Paul. Mass concentration in rescaled first order integral functionals. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 431-472. doi: 10.5802/jep.257

[AFP00] Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs, Oxford University Press, Oxford, New York, 2000 | DOI | MR

[AG99] Aviles, Patricio; Giga, Yoshikazu On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A, Volume 129 (1999) no. 1, pp. 1-17 | DOI | Zbl | MR

[BB90] Bouchitté, Guy; Buttazzo, Giuseppe New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal., Volume 15 (1990) no. 7, pp. 679-692 | DOI | Zbl | MR

[BB93] Bouchitté, Guy; Buttazzo, Giuseppe Relaxation for a class of nonconvex functionals defined on measures, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 10 (1993) no. 3, pp. 345-361 | DOI | Zbl | Numdam | MR

[BBH17] Bethuel, Fabrice; Brezis, Haim; Hélein, Frédéric Ginzburg-Landau vortices, Modern Birkhäuser Classics, Springer International Publishing, Cham, 2017 | DOI | MR

[BCM09] Bernot, Marc; Caselles, Vicent; Morel, Jean-Michel Optimal transportation networks: Models and theory, Lect. Notes in Math., Springer-Verlag, Berlin Heidelberg, 2009 | DOI | MR

[BDS96] Bouchitté, Guy; Dubs, Christophe; Seppecher, Pierre Transitions de phases avec un potentiel dégénéré à l’infini, application à l’équilibre de petites gouttes, C. R. Acad. Sci. Paris Sér. I Math., Volume 323 (1996) no. 9, pp. 1103-1108 | Zbl | MR

[BPP12] Bauman, Patricia; Park, Jinhae; Phillips, Daniel Analysis of nematic liquid crystals with disclination lines, Arch. Rational Mech. Anal., Volume 205 (2012) no. 3, pp. 795-826 | DOI | MR | Zbl

[Bra02] Braides, Andrea Gamma-convergence for beginners, Oxford Lect. Series in Math. and its Appl., Oxford University Press, Oxford, 2002 | DOI | MR

[But89] Buttazzo, Giuseppe Semicontinuity, relaxation and integral representation in the calculus of variations, Longman Scientific & Technical; New York: John Wiley & Sons, Harlow, 1989 | MR

[BZ88] Brothers, John E.; Ziemer, William P. Minimal rearrangements of Sobolev functions, J. reine angew. Math., Volume 384 (1988), pp. 153-179 | Zbl | MR

[CDRMS17] Colombo, Maria; De Rosa, Antonio; Marchese, Andrea; Stuvard, Salvatore On the lower semicontinuous envelope of functionals defined on polyhedral chains, Nonlinear Anal., Volume 163 (2017), pp. 201-215 | DOI | MR | Zbl

[DPH03] De Pauw, Thierry; Hardt, Robert Size minimization and approximating problems, Calc. Var. Partial Differential Equations, Volume 17 (2003) no. 4, pp. 405-442 | DOI | MR | Zbl

[Dub98] Dubs, Christophe Problèmes de perturbations singulières avec un potentiel dégénéré a l’infini, Thèse de Doctorat, Toulon (1998)

[Fed59] Federer, Herbert Curvature measures, Trans. Amer. Math. Soc., Volume 93 (1959) no. 3, pp. 418-491 | DOI | MR | Zbl

[Fle66] Fleming, Wendell H. Flat chains over a finite coefficient group, Trans. Amer. Math. Soc., Volume 121 (1966) no. 1, pp. 160-186 | DOI | MR | Zbl

[Mar14] Mariş, Mihai Profile decomposition for sequences of Borel measures, 2014 | arXiv

[MM77] Modica, Luciano; Mortola, Stefano Un esempio di Γ - -convergenza, Boll. Un. Mat. Ital. B (5), Volume 14 (1977), p. 285–299 | Zbl | MR

[Mon15] Monteil, Antonin Elliptic approximations of singular energies under divergence constraint, Ph. D. Thesis, Université Paris-Saclay (2015)

[Mon17] Monteil, Antonin Uniform estimates for a Modica–Mortola type approximation of branched transportation, ESAIM Control Optim. Calc. Var., Volume 23 (2017) no. 1, pp. 309-335 | DOI | Zbl | MR | Numdam

[Nir59] Nirenberg, L. On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 13 (1959) no. 2, pp. 115-162 | MR | Numdam | Zbl

[OS11] Oudet, Edouard; Santambrogio, Filippo A Modica-Mortola approximation for branched transport and applications, Arch. Rational Mech. Anal., Volume 201 (2011) no. 1, pp. 115-142 | DOI | Zbl | MR

[PSZ99] Pucci, Patrizia; Serrin, James; Zou, Henghui A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. (9), Volume 78 (1999) no. 8, pp. 769-789 | DOI | MR | Zbl

[RV73] Roberts, A.W.; Varberg, D.E. Convex functions, Pure and Applied Math., 57, Academic Press, 1973 | MR

[San15] Santambrogio, Filippo Optimal transport for applied mathematicians, Progress in nonlinear differential equations and their applications, 87, Springer International Publishing, Cham, 2015 | DOI | MR

[ST00] Serrin, James; Tang, Moxun Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 897-923 | MR | Zbl

[Wir19] Wirth, Benedikt Phase field models for two-dimensional branched transportation problems, Calc. Var. Partial Differential Equations, Volume 58 (2019) no. 5, 164, 31 pages | DOI | MR | Zbl

Cité par Sources :