[Non dégénérescence des orbites périodiques pour un potentiel générique]
We prove that Mañé generic convex Hamiltonians have only non-degenerate periodic orbits on a given energy level. This result was stated, but not proved, in the literature.
On démontre qu’un hamiltonien convexe générique au sens de Mañé n’a que des orbites périodiques non dégénérées sur un niveau d’énergie donné. Ce résultat a déjà été énoncé, mais pas démontré, dans la littérature.
Accepté le :
Publié le :
DOI : 10.5802/jep.255
Keywords: Hamiltonian systems, periodic orbits, generic properties, classical systems
Mots-clés : Systèmes hamiltoniens, orbites périodiques, propriétés génériques, systèmes classiques
Bernard, Patrick  1
CC-BY 4.0
@article{JEP_2024__11__363_0,
author = {Bernard, Patrick},
title = {Non-degeneracy of closed orbits for generic~potentials},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {363--393},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.255},
mrnumber = {4703777},
zbl = {1534.70033},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.255/}
}
TY - JOUR AU - Bernard, Patrick TI - Non-degeneracy of closed orbits for generic potentials JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 363 EP - 393 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.255/ DO - 10.5802/jep.255 LA - en ID - JEP_2024__11__363_0 ER -
Bernard, Patrick. Non-degeneracy of closed orbits for generic potentials. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 363-393. doi: 10.5802/jep.255
[1] Transversality in manifolds of mappings, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 470-474 | DOI | Zbl | MR
[2] Bumpy metrics, Global Analysis (Berkeley, Calif., 1968) (Proc. Sympos. Pure Math.), Volume XIV, American Mathematical Society, Providence, RI, 1970, pp. 1-3 | Zbl | MR
[3] Generic properties of closed geodesics, Izv. Akad. Nauk Armjan. SSR Ser. Mat., Volume 46 (1982) no. 4, pp. 675-709 English transl.: Math. USSR-Izv. 21 (1983), no. 1, p. 1–29 | MR | Zbl
[4] Normal form near orbit segments of convex Hamiltonian systems, Internat. Math. Res. Notices (2022) no. 11, pp. 8196-8208 | DOI | Zbl | MR
[5] Bumpy metric theorem in the sense of Mañe for non-convex Hamiltonians, 2022 | arXiv
[6] Libration in systems with many degrees of freedom, J. Appl. Math. Mech., Volume 42 (1978) no. 2, pp. 256-261 | DOI | Zbl
[7] Geodesic flows with positive topological entropy, twist maps and hyperbolicity, Ann. of Math. (2), Volume 172 (2010) no. 2, pp. 761-808 | DOI | Zbl | MR
[8] Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc., Volume 218 (1976), pp. 89-113 | DOI | MR | Zbl
[9] Symplectic geometry and quantum mechanics, Operator Theory: Advances and App., 166, Birkhäuser Verlag, Basel, 2006 | DOI | MR
[10] The principle of least action and periodic solutions in problems of classical mechanics, J. Appl. Math. Mech., Volume 40 (1976), pp. 363-370 | DOI | Zbl
[11] Contribution à la théorie des champs génériques, Contrib. Differential Equations, Volume 2 (1963), pp. 457-484 | Zbl | MR
[12] Franks’ lemma for -Mañé perturbations of Riemannian metrics and applications to persistence, J. Modern Dyn., Volume 10 (2016), pp. 379-411 | DOI | Zbl | MR
[13] Generic properties of Lagrangians on surfaces: the Kupka-Smale theorem, Discrete Contin. Dynam. Systems, Volume 21 (2008) no. 2, pp. 551-569 | DOI | MR | Zbl
[14] Generic properties of closed orbits of Hamiltonian flows from Mañé’s viewpoint, Internat. Math. Res. Notices (2012) no. 22, pp. 5246-5265 | DOI | Zbl | MR
[15] Generic properties of conservative systems, Amer. J. Math., Volume 92 (1970), pp. 562-603 | DOI | Zbl
[16] Generic properties of conservative systems. II, Amer. J. Math., Volume 92 (1970), pp. 897-906 | DOI | MR | Zbl
[17] Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), Volume 17 (1963), pp. 97-116 | MR | Numdam | Zbl
Cité par Sources :





