Invariant submanifolds of conformal symplectic dynamics
[Variétés invariantes des dynamiques conformément symplectiques]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 159-185

We study invariant manifolds of conformal symplectic dynamical systems on a symplectic manifold (,ω) of dimension 4. We first prove the ω-isotropy of an invariant manifold 𝒩, assuming the entropy of 𝒩 is small with respect to the conformality rate. Next, when (,ω) is exact and 𝒩 is isotropic, we show that 𝒩 must be exact for some choice of the primitive of ω, under the condition that the dynamics acts trivially on the cohomology of degree 1 of 𝒩. The conclusion partially extends if a one-sided orbit of 𝒩 has compact closure. We eventually describe some conditions showing the uniqueness of 𝒩.

Nous étudions les variétés invariantes des systèmes dynamiques conformes symplectiques sur une variété symplectique (,ω) de dimension 4. Nous montrons d’abord qu’une variété invariante 𝒩 est ω-isotrope, à supposer que l’entropie de la dynamique restreinte soit petite par rapport au taux de conformalité. Ensuite, quand (,ω) est exacte et 𝒩 isotrope, nous montrons que 𝒩 est exacte pour un certain choix de primitive de ω, sous la condition que la dynamique agit trivialement sur la cohomologie de degré 1 de 𝒩. La conclusion se généralise partiellement si une demi-orbite de 𝒩 est d’adhérence compacte. Enfin, nous décrivons des conditions montrant l’unicité de 𝒩.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.252
Classification : 37C05, 37J39, 38A35
Keywords: Conformal symplectic dynamics, isotropy, entropy, exactness, Lagrangian submanifold, invariant manifold
Mots-clés : Dynamique conformément symplectique, isotropie, exactitude, variétés lagrangiennes, variétés invariantes

Arnaud, Marie-Claude  1   ; Fejoz, Jacques  2

1 Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, F-75006 Paris, France & Institut universitaire de France
2 Université Paris Dauphine, CEREMADE, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France & Observatoire de Paris, IMCCE, 77, avenue Denfert Rochereau, 75014 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__159_0,
     author = {Arnaud, Marie-Claude and Fejoz, Jacques},
     title = {Invariant submanifolds of conformal symplectic dynamics},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {159--185},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.252},
     mrnumber = {4688439},
     zbl = {1541.37062},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.252/}
}
TY  - JOUR
AU  - Arnaud, Marie-Claude
AU  - Fejoz, Jacques
TI  - Invariant submanifolds of conformal symplectic dynamics
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 159
EP  - 185
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.252/
DO  - 10.5802/jep.252
LA  - en
ID  - JEP_2024__11__159_0
ER  - 
%0 Journal Article
%A Arnaud, Marie-Claude
%A Fejoz, Jacques
%T Invariant submanifolds of conformal symplectic dynamics
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 159-185
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.252/
%R 10.5802/jep.252
%G en
%F JEP_2024__11__159_0
Arnaud, Marie-Claude; Fejoz, Jacques. Invariant submanifolds of conformal symplectic dynamics. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 159-185. doi: 10.5802/jep.252

[1] Arnold, V. I.; Avez, A. Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, 9, Gauthier-Villars, Éditeur, Paris, 1967 | MR

[2] Calleja, Renato C.; Celletti, Alessandra; de la Llave, Rafael Local behavior near quasi-periodic solutions of conformally symplectic systems, J. Dynam. Differential Equations, Volume 25 (2013) no. 3, pp. 821-841 | DOI | MR | Zbl

[3] Geiges, Hansjörg Symplectic manifolds with disconnected boundary of contact type, Internat. Math. Res. Notices (1994) no. 1, pp. 23-30 | DOI | Zbl | MR

[4] Geiges, Hansjörg Examples of symplectic 4-manifolds with disconnected boundary of contact type, Bull. London Math. Soc., Volume 27 (1995) no. 3, pp. 278-280 | DOI | MR | Zbl

[5] Godbillon, Claude Éléments de topologie algébrique, Hermann, Paris, 1971 | MR

[6] Gromov, M. Entropy, homology and semialgebraic geometry, Séminaire Bourbaki, Vol. 1985/86 (Astérisque), Volume 145-146, Société Mathématique de France, Paris, 1987, pp. 225-240 | MR

[7] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Math. and its Appl., 54, Cambridge University Press, Cambridge, 1995 | DOI

[8] Le Calvez, P. Propriétés des attracteurs de Birkhoff, Ergodic Theory Dynam. Systems, Volume 8 (1988) no. 2, pp. 241-310 | DOI | Zbl | MR

[9] Libermann, Paulette Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque Géom. Diff. Globale (Bruxelles, 1958), Librairie Universitaire, Louvain, 1959, pp. 37-59 | Zbl | MR

[10] Mañé, Ricardo On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, Volume 5 (1992) no. 3, pp. 623-638 | DOI | MR | Zbl

[11] Marò, Stefano; Sorrentino, Alfonso Aubry-Mather theory for conformally symplectic systems, Comm. Math. Phys., Volume 354 (2017) no. 2, pp. 775-808 | DOI | MR | Zbl

[12] McDuff, Dusa Symplectic manifolds with contact type boundaries, Invent. Math., Volume 103 (1991) no. 3, pp. 651-671 | DOI | MR | Zbl

[13] Shelukhin, Egor Symplectic cohomology and a conjecture of Viterbo, Geom. Funct. Anal., Volume 32 (2022) no. 6, pp. 1514-1543 | DOI | MR | Zbl

[14] Siburg, Karl Friedrich The principle of least action in geometry and dynamics, Lect. Notes in Math., 1844, Springer-Verlag, Berlin, 2004, xii+128 pages | DOI | MR

[15] Vaisman, Izu Locally conformal symplectic manifolds, Internat. Math. Res. Notices, Volume 8 (1985) no. 3, pp. 521-536 | DOI | MR | Zbl

[16] Viterbo, Claude Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | DOI | Zbl | MR

[17] Viterbo, Claude Symplectic topology and Hamilton-Jacobi equations, Morse theoretic methods in nonlinear analysis and in symplectic topology (NATO Sci. Ser. II Math. Phys. Chem.), Volume 217, Springer, Dordrecht, 2006, pp. 439-459 | DOI | MR | Zbl

[18] Viterbo, Claude Symplectic homogenization, J. Éc. polytech. Math., Volume 10 (2023), pp. 67-140 | DOI | MR | Zbl

[19] Weinstein, Alan Lectures on symplectic manifolds, CBMS Regional Conference Series in Mathematics, 29, American Mathematical Society, Providence, RI, 1979 | MR

[20] Yomdin, Y. Volume growth and entropy, Israel J. Math., Volume 57 (1987) no. 3, pp. 285-300 | DOI | MR | Zbl

Cité par Sources :