[Méthode de l’hyperbole sur les variétés toriques]
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brüdern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height on complete smooth split toric -varieties with torus invariant boundary. We apply the strong duality principle in linear programming to show the compatibility of our results with the conjectured asymptotic.
Nous développons une version très générale de la méthode de l’hyperbole qui étend la méthode connue de Blomer et Brüdern pour les produits d’espaces projectifs à des variétés toriques complètes, lisses et scindées. Nous l’utilisons pour compter les points de Campana de hauteur log-anticanonique bornée sur des -variétés toriques complètes, lisses et scindées avec un bord invariant sous l’action du tore. Nous appliquons le principe de dualité forte en programmation linéaire pour montrer la compatibilité de nos résultats avec l’asymptotique conjecturée.
Accepté le :
Publié le :
DOI : 10.5802/jep.251
Keywords: Hyperbola method, $m$-full numbers, Campana points, toric varieties
Mots-clés : Méthode de l’hyperbole, nombres $m$-pleins, points de Campana, variétés toriques
Pieropan, Marta  1 ; Schindler, Damaris  2
CC-BY 4.0
@article{JEP_2024__11__107_0,
author = {Pieropan, Marta and Schindler, Damaris},
title = {Hyperbola method on toric varieties},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {107--157},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.251},
mrnumber = {4683391},
zbl = {07811890},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.251/}
}
TY - JOUR AU - Pieropan, Marta AU - Schindler, Damaris TI - Hyperbola method on toric varieties JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 107 EP - 157 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.251/ DO - 10.5802/jep.251 LA - en ID - JEP_2024__11__107_0 ER -
Pieropan, Marta; Schindler, Damaris. Hyperbola method on toric varieties. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 107-157. doi: 10.5802/jep.251
[ADHL15] Cox rings, Cambridge Studies in Advanced Math., 144, Cambridge University Press, Cambridge, 2015 | MR
[BB17] Rational points on the inner product cone via the hyperbola method, Mathematika, Volume 63 (2017) no. 3, pp. 780-796 | DOI | MR | Zbl
[BB18] Counting in hyperbolic spikes: The diophantine analysis of multihomogeneous diagonal equations, J. reine angew. Math., Volume 737 (2018), pp. 255-300 | DOI | MR | Zbl
[BBK + 23] Campana points on diagonal hypersurfaces, Women in numbers Europe IV–research directions in number theory, to appear, 2023 | arXiv | MR | Zbl
[BG58] On a theorem of Erdös and Szekeres, Illinois J. Math., Volume 2 (1958), pp. 88-98 http://projecteuclid.org/euclid.ijm/1255380836 | Zbl | MR
[BH19] Counting rational points on biquadratic hypersurfaces, Adv. Math., Volume 349 (2019), pp. 920-940 | DOI | MR | Zbl
[BM90] Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann., Volume 286 (1990) no. 1-3, pp. 27-43 | DOI | Zbl | MR
[BT95a] Rational points of bounded height on compactifications of anisotropic tori, Internat. Math. Res. Notices (1995) no. 12, pp. 591-635 | DOI | MR | Zbl
[BT95b] Rational points on toric varieties, Number theory (Halifax, NS, 1994) (CMS Conf. Proc.), Volume 15, American Mathematical Society, Providence, RI, 1995, pp. 39-48 | MR | Zbl
[BT96] Height zeta functions of toric varieties, J. Math. Sci., Volume 82 (1996) no. 1, pp. 3220-3239 (Algebraic geometry, 5) | DOI | MR | Zbl
[BT98] Manin’s conjecture for toric varieties, J. Algebraic Geom., Volume 7 (1998) no. 1, pp. 15-53 | Zbl | MR
[BVV12] Sums of three squareful numbers, Experiment. Math., Volume 21 (2012) no. 2, pp. 204-211 | DOI | MR | Zbl
[BY21] Arithmetic of higher-dimensional orbifolds and a mixed Waring problem, Math. Z., Volume 299 (2021) no. 1-2, pp. 1071-1101 | DOI | MR | Zbl
[Cam04] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 3, pp. 499-630 http://aif.cedram.org/item?id=AIF_2004__54_3_499_0 | MR | Numdam | DOI
[Cam11] Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011) no. 4, pp. 809-934 | DOI | Zbl | MR
[Cam15] Special manifolds, arithmetic and hyperbolic aspects: a short survey, Rational points, rational curves, and entire holomorphic curves on projective varieties (Contemp. Math.), Volume 654, American Mathematical Society, Providence, RI, 2015, pp. 23-52 | MR | Zbl | DOI
[CLS11] Toric varieties, Graduate Studies in Math., 124, American Mathematical Society, Providence, RI, 2011 | MR
[CLT10] Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math., Volume 2 (2010) no. 3, pp. 351-429 | DOI | MR | Zbl | Numdam
[Cox95] The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., Volume 4 (1995) no. 1, pp. 17-50 | Zbl | MR
[Dan98] Linear programming and extensions, Princeton Landmarks in Math., Princeton University Press, Princeton, NJ, 1998 | MR
[Dav51] On a principle of Lipschitz, J. London Math. Soc., Volume 26 (1951), pp. 179-183 | DOI | MR | Zbl
[dlB01a] Compter des points d’une variété torique, J. Number Theory, Volume 87 (2001) no. 2, pp. 315-331 | DOI | MR | Zbl
[dlB01b] Estimation de sommes multiples de fonctions arithmétiques, Compositio Math., Volume 128 (2001) no. 3, pp. 261-298 | DOI | Zbl | MR
[ES34] Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged), Volume 7 (1934) no. 2, pp. 92 -102 | Zbl
[FP16] O-minimality on twisted universal torsors and Manin’s conjecture over number fields, Ann. Sci. École Norm. Sup. (4), Volume 49 (2016) no. 4, pp. 757-811 | Zbl | DOI | MR | Numdam
[GOST15] Characterization of varieties of Fano type via singularities of Cox rings, J. Algebraic Geom., Volume 24 (2015) no. 1, pp. 159-182 | DOI | MR | Zbl
[Gou72] Combinatorial identities. A standardized set of tables listing 500 binomial coefficient summations, Pure and Applied Math., 139, Henry W. Gould, Morgantown, WV, 1972 | MR
[Har04] Weak approximation on algebraic varieties, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002) (Progress in Math.), Volume 226, Birkhäuser Boston, Boston, MA, 2004, pp. 43-60 | DOI | Zbl | MR
[Mig15] Points de hauteur bornée sur les hypersurfaces lisses de l’espace triprojectif, Int. J. Number Theory, Volume 11 (2015) no. 3, pp. 945-995 | DOI | MR | Zbl
[Mig16] Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques, Acta Arith., Volume 172 (2016) no. 1, pp. 1-97 | Zbl | MR | DOI
[Mig18] Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques. Cas général, 2018 | arXiv
[Pie16] Imaginary quadratic points on toric varieties via universal torsors, Manuscripta Math., Volume 150 (2016) no. 3-4, pp. 415-439 | DOI | MR | Zbl
[PSTVA21] Campana points of bounded height on vector group compactifications, Proc. London Math. Soc. (3), Volume 123 (2021) no. 1, pp. 57-101 | DOI | MR | Zbl
[Sal98] Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque, 251, Société Mathématique de France, Paris, 1998, pp. 91-258 | Numdam
[San23] Diagonal quartic surfaces with a Brauer-Manin obstruction, Compositio Math., Volume 159 (2023) no. 4, pp. 659-710 | DOI | MR | Zbl
[Sch14] Bihomogeneous forms in many variables, J. Théor. Nombres Bordeaux, Volume 26 (2014) no. 2, pp. 483-506 http://jtnb.cedram.org/... | Zbl | MR | Numdam | DOI
[Sch16] Manin’s conjecture for certain biprojective hypersurfaces, J. reine angew. Math., Volume 714 (2016), pp. 209-250 | DOI | MR | Zbl
[Shu21] Sums of four squareful numbers, 2021 | arXiv
[Shu22] On the leading constant in the Manin-type conjecture for Campana points, Acta Arith., Volume 204 (2022) no. 4, pp. 317-346 | DOI | MR | Zbl
[Str22] Campana points and powerful values of norm forms, Math. Z., Volume 301 (2022) no. 1, pp. 627-664 | DOI | Zbl | MR
[VV12] Squareful numbers in hyperplanes, Algebra Number Theory, Volume 6 (2012) no. 5, pp. 1019-1041 | MR | Zbl | DOI
[Xia22] Campana points on biequivariant compactifications of the Heisenberg group, European J. Math., Volume 8 (2022) no. 1, pp. 205-246 | DOI | Zbl | MR
Cité par Sources :





