[Sur l’inégalité Faber-Krahn polygonale]
It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For we perform this computation and certify the numerical approximation by finite elements, up to machine errors.
Il y a soixante-dix ans, Pólya et Szegö ont conjecturé que l’ensemble du plan qui minimise la première valeur propre du laplacien avec conditions de Dirichlet au bord parmi les polygones de côtés et aire fixée est le polygone régulier. Malgré sa simplicité apparente, cette conjecture a été démontrée seulement pour les triangles et les quadrilatères. Dans cet article, nous démontrons que pour chaque la preuve de la conjecture peut être réduite à un nombre fini de calculs numériques certifiés. En particulier, la minimalité locale du polygone régulier est réduite à un seul calcul certifié. Pour nous faisons ce calcul et nous certifions l’approximation par éléments finis, aux erreurs d’arrondi près.
Accepté le :
Publié le :
DOI : 10.5802/jep.250
Keywords: Faber-Krahn inequality, polygons, shape optimization, numerical approximations
Mots-clés : Inégalité de Faber-Krahn, polygones, optimisation de forme, approximations numériques
Bogosel, Beniamin  1 ; Bucur, Dorin  2
CC-BY 4.0
@article{JEP_2024__11__19_0,
author = {Bogosel, Beniamin and Bucur, Dorin},
title = {On the polygonal {Faber-Krahn} inequality},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {19--105},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.250},
mrnumber = {4683390},
zbl = {1537.35261},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.250/}
}
TY - JOUR AU - Bogosel, Beniamin AU - Bucur, Dorin TI - On the polygonal Faber-Krahn inequality JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 19 EP - 105 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.250/ DO - 10.5802/jep.250 LA - en ID - JEP_2024__11__19_0 ER -
Bogosel, Beniamin; Bucur, Dorin. On the polygonal Faber-Krahn inequality. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 19-105. doi: 10.5802/jep.250
[1] Proof of the fundamental gap conjecture, J. Amer. Math. Soc., Volume 24 (2011) no. 3, pp. 899-916 | DOI | Zbl | MR
[2] New bounds for the principal Dirichlet eigenvalue of planar regions, Experiment. Math., Volume 15 (2006) no. 3, pp. 333-342 http://projecteuclid.org/euclid.em/1175789762 | DOI | MR | Zbl
[3] A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math. (2), Volume 135 (1992) no. 3, pp. 601-628 | Zbl | DOI | MR
[4] Efficient management of parallelism in object oriented numerical software libraries, Modern software tools in scientific computing (Arge, E.; Bruaset, A. M.; Langtangen, H. P., eds.), Birkhäuser Press, 1997, pp. 163-202 | Zbl | DOI
[5] Stability estimates for resolvents, eigenvalues, and eigenfunctions of elliptic operators on variable domains, Around the research of Vladimir Maz’ya. II (Int. Math. Ser. (N. Y.)), Volume 12, Springer, New York, 2010, pp. 23-60 | MR | DOI | Zbl
[6] Comparable upper and lower bounds for boundary values of Neumann eigenfunctions and tight inclusion of eigenvalues, Duke Math. J., Volume 167 (2018) no. 16, pp. 3059-3114 | DOI | MR | Zbl
[7] Estimates for Dirichlet eigenfunctions, J. London Math. Soc. (2), Volume 59 (1999) no. 2, pp. 607-619 | DOI | MR | Zbl
[8] Shape optimization and spectral problems, Ph. D. Thesis, Université Grenoble Alpes (2015)
[9] Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III. Finite element methods on polygonal domains, SIAM J. Numer. Anal., Volume 29 (1992) no. 1, pp. 136-155 | DOI | MR | Zbl
[10] Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1355-1376 | Zbl | MR | DOI | Numdam
[11] Blaschke-Santaló and Mahler inequalities for the first eigenvalue of the Dirichlet Laplacian, Proc. London Math. Soc. (3), Volume 113 (2016) no. 3, pp. 387-417 | DOI | Zbl | MR
[12] Symmetry results for variational energies on convex polygons, ESAIM Control Optim. Calc. Var., Volume 27 (2021), 3, 16 pages | DOI | Zbl | MR
[13] A surgery result for the spectrum of the Dirichlet Laplacian, SIAM J. Math. Anal., Volume 47 (2015) no. 6, pp. 4451-4466 | DOI | Zbl | MR
[14] Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators, Rev. Mat. Univ. Complut., Volume 25 (2012) no. 2, pp. 435-457 | DOI | MR | Zbl
[15] The finite element method for elliptic problems, Classics in Applied Math., 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002 | DOI
[16] A counterexample to Payne’s nodal line conjecture with few holes, Commun. Nonlinear Sci. Numer. Simul., Volume 103 (2021), 105957, 13 pages | DOI | MR | Zbl
[17] Computation of tight enclosures for Laplacian eigenvalues, SIAM J. Sci. Comput., Volume 42 (2020) no. 5, p. A3210-A3232 | DOI | MR | Zbl
[18] Stability in shape optimization with second variation, J. Differential Equations, Volume 267 (2019) no. 5, pp. 3009-3045 | DOI | MR | Zbl
[19] Krahn’s proof of the Rayleigh conjecture revisited, Arch. Math. (Basel), Volume 96 (2011) no. 2, pp. 187-199 | DOI | MR | Zbl
[20] Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions, Lect. Notes in Math., 1341, Springer-Verlag, Berlin, 1988 | DOI | MR
[21] Eigenvalue stability bounds via weighted Sobolev spaces, Math. Z., Volume 214 (1993) no. 3, pp. 357-371 | DOI | MR | Zbl
[22] A combined finite element and Bayesian optimization framework for shape optimization in spectral geometry, Comput. Math. Appl., Volume 74 (2017) no. 11, pp. 2874-2896 | DOI | MR | Zbl
[23] The design and implementation of hypre, a library of parallel high performance preconditioners, Numerical solution of partial differential equations on parallel computers (Lect. Notes Comput. Sci. Eng.), Volume 51, Springer, Berlin, 2006, pp. 267-294 | DOI | MR | Zbl
[24] Estimates for the deviation of solutions and eigenfunctions of second-order elliptic Dirichlet boundary value problems under domain perturbation, J. Differential Equations, Volume 260 (2016) no. 4, pp. 3448-3476 | DOI | MR | Zbl
[25] Serrin-type theorems for triangles, Proc. Amer. Math. Soc., Volume 147 (2019) no. 4, pp. 1615-1626 | DOI | MR | Zbl
[26] Any three eigenvalues do not determine a triangle, J. Differential Equations, Volume 275 (2021), pp. 920-938 | DOI | MR | Zbl
[27] Solving Laplace problems with corner singularities via rational functions, SIAM J. Numer. Anal., Volume 57 (2019) no. 5, pp. 2074-2094 | DOI | MR | Zbl
[28] A posteriori error estimation techniques in practical finite element analysis, Computers & Structures, Volume 83 (2005) no. 4-5, pp. 235-265 | DOI | MR
[29] Geometrical structure of Laplacian eigenfunctions, SIAM Rev., Volume 55 (2013) no. 4, pp. 601-667 | DOI | MR | Zbl
[30] Elliptic problems in nonsmooth domains, Monogr. and Studies in Math., 24, Pitman, Boston, MA, 1985 | MR
[31] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | MR | Zbl
[32] Extremum problems for eigenvalues of elliptic operators, Frontiers in Math., Birkhäuser Verlag, Basel, 2006 | DOI | MR
[33] Shape optimization and spectral theory (Henrot, Antoine, ed.), De Gruyter Open, Warsaw, 2017 | DOI | Zbl
[34] Shape variation and optimization, EMS Tracts in Math., 28, European Mathematical Society (EMS), Zürich, 2018 | DOI | MR
[35] Positivity of the shape Hessian and instability of some equilibrium shapes, Mediterr. J. Math., Volume 1 (2004) no. 2, pp. 195-214 | DOI | MR | Zbl
[36] SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, Volume 31 (2005) no. 3, pp. 351-362 | DOI | MR | Zbl
[37] Universal extension for Sobolev spaces of differential forms and applications, J. Funct. Anal., Volume 263 (2012) no. 2, pp. 364-382 | DOI | MR | Zbl
[38] Matrix analysis, Cambridge University Press, Cambridge, 2013 | MR
[39] Computing ultra-precise eigenvalues of the Laplacian within polygons, Adv. Comput. Math., Volume 43 (2017) no. 6, pp. 1325-1354 | DOI | MR | Zbl
[40] On Stein’s extension operator preserving Sobolev-Morrey spaces, Math. Nachr., Volume 292 (2019) no. 8, pp. 1701-1715 | DOI | MR | Zbl
[41] Estimates of first and second order shape derivatives in nonsmooth multidimensional domains and applications, J. Funct. Anal., Volume 270 (2016) no. 7, pp. 2616-2652 | DOI | MR | Zbl
[42] Triangles and other special domains, Shape optimization and spectral theory, De Gruyter Open, Warsaw, 2017, pp. 149-200 | Zbl | DOI
[43] Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains, J. Math. Pures Appl. (9), Volume 134 (2020), pp. 328-368 | MR | Zbl | DOI
[44] Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal., Volume 51 (2013) no. 3, pp. 1634-1654 | DOI | Zbl | MR
[45] A lower estimation of the principal frequencies of simply connected membranes, Acta Math. Acad. Sci. Hungar., Volume 16 (1965), pp. 319-323 | DOI | MR | Zbl
[46] A proof of Saint-Venant’s theorem on torsional rigidity, Acta Math. Acad. Sci. Hungar., Volume 17 (1966), pp. 419-422 | DOI | MR | Zbl
[47] A proof via finite elements for Schiffer’s conjecture on a regular pentagon, Found. Comput. Math., Volume 20 (2020) no. 6, pp. 1475-1504 | DOI | MR | Zbl
[48] Sharp trace inequalities on fractional Sobolev spaces, Math. Nachr., Volume 284 (2011) no. 5-6, pp. 761-763 | DOI | MR | Zbl
[49] Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians, Bull. London Math. Soc., Volume 29 (1997) no. 6, pp. 720-730 | DOI | MR | Zbl
[50] Isoperimetric inequalities in mathematical physics, Annals of Math. Studies, 27, Princeton University Press, Princeton, NJ, 1951 | MR
[51] A note on the Sobolev and Gagliardo-Nirenberg inequality when , Adv. Nonlinear Stud., Volume 20 (2020) no. 2, pp. 361-371 | DOI | Zbl | MR
[52] Verification methods: rigorous results using floating-point arithmetic, Acta Numer., Volume 19 (2010), pp. 287-449 | DOI | MR | Zbl
[53] Domain perturbations and estimates for the solutions of second order elliptic equations, J. Math. Pures Appl. (9), Volume 81 (2002) no. 11, pp. 1071-1112 | DOI | Zbl | MR
[54] An isoperimetric inequality for logarithmic capacity of polygons, Ann. of Math. (2), Volume 159 (2004) no. 1, pp. 277-303 | DOI | MR | Zbl
[55] Singular integrals and differentiability properties of functions, Princeton Math. Series, 30, Princeton University Press, Princeton, NJ, 1970 | MR
[56] An introduction to Sobolev spaces and interpolation spaces, Lect. Notes Unione Mat. Italiana, 3, Springer, Berlin; UMI, Bologna, 2007 | MR
[57] Eigenvectors of block circulant and alternating circulant matrices, New Zealand J. Math., Volume 36 (2007), pp. 195-211 | MR | Zbl
[58] The boundary gradient estimate for quasilinear elliptic and parabolic differential equations, Indiana Univ. Math. J., Volume 21 (1971/72), pp. 657-670 | DOI | MR | Zbl
Cité par Sources :





