The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion
[Fonction zêta de Ruelle pour les orbifolds hyperboliques de dimension 2 et torsion de Reidemeister-Turaev]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1391-1439

Let X be a compact hyperbolic surface with finite order singularities, X 1 its unit tangent bundle. We consider the Ruelle zeta function R(s;ρ) associated to a representation ρ:π 1 (X 1 )GL(V ρ ). If ρ does not factor through π 1 (X), we show that the value at 0 of the Ruelle zeta function equals the sign-refined Reidemeister–Turaev torsion of (X 1 ,ρ) with respect to the Euler structure induced by the geodesic flow and to the natural homology orientation of X 1 . It generalizes Fried’s conjecture to non-unitary representations, and solves the phase and sign ambiguity in the unitary case. We also compute the vanishing order and the leading coefficient of the Ruelle zeta function at s=0 when ρ factors through π 1 (X).

Soit X un orbifold hyperbolique de dimension 2, et X 1 son fibré unitaire tangent. Étant donnée une représentation ρ:π 1 (X 1 )GL(V ρ ), nous étudions dans cet article une fonction zêta dynamique introduite par Ruelle, notée R(s,ρ), associée à la paire (X 1 ,ρ). Nous montrons que sa valeur en s=0 est un invariant topologique, la torsion de Reidemeister-Turaev tor(X 1 ,ρ), si la représentation ρ ne factorise pas par π 1 (X). Cela généralise des résultats de Fried, qui avait prouvé tor(X 1 ,ρ)=R(0,ρ) pour ρ unitaire et classique. Nous levons donc les restrictions sur le choix de ρ, et les indéterminations de phase pour la torsion. Pour cela, nous utilisons la structure d’Euler associée au flot géodésique sur X 1 . Quand la représentation ρ est un relevé d’une représentation de π 1 (X), nous déterminons son ordre d’annulation en s=0, ainsi que son coefficient dominant.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.247
Classification : 11M36, 11F72, 37C30, 57Q10
Keywords: Hyperbolic orbisurface, twisted Ruelle zeta function, non-unitary representation, Reidemeister–Turaev torsion, Selberg trace formula
Mots-clés : Orbifold hyperbolique, fonctions zêta de Ruelle, torsion de Reidemeister-Turaev, formule des traces de Selberg

Bénard, Léo 1 ; Frahm, Jan 2 ; Spilioti, Polyxeni 3

1 Institut de Mathématiques de Marseille, Aix–Marseille Université Site de Saint Charles, 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3, France
2 Department of Mathematics, Aarhus University Ny Munkegade 118, 8000 Aarhus C, Denmark
3 Mathematisches Institut, Georg–August Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__1391_0,
     author = {B\'enard, L\'eo and Frahm, Jan and Spilioti, Polyxeni},
     title = {The twisted {Ruelle} zeta function on compact~hyperbolic orbisurfaces and {Reidemeister{\textendash}Turaev} torsion},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1391--1439},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.247},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.247/}
}
TY  - JOUR
AU  - Bénard, Léo
AU  - Frahm, Jan
AU  - Spilioti, Polyxeni
TI  - The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 1391
EP  - 1439
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.247/
DO  - 10.5802/jep.247
LA  - en
ID  - JEP_2023__10__1391_0
ER  - 
%0 Journal Article
%A Bénard, Léo
%A Frahm, Jan
%A Spilioti, Polyxeni
%T The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 1391-1439
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.247/
%R 10.5802/jep.247
%G en
%F JEP_2023__10__1391_0
Bénard, Léo; Frahm, Jan; Spilioti, Polyxeni. The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1391-1439. doi: 10.5802/jep.247

[1] Anantharaman, Nalini Spectral deviations for the damped wave equation, Geom. Funct. Anal., Volume 20 (2010) no. 3, pp. 593-626 | DOI | Zbl | MR

[2] Barbasch, Dan; Moscovici, Henri L 2 -index and the Selberg trace formula, J. Funct. Anal., Volume 53 (1983) no. 2, pp. 151-201 | DOI | MR | Zbl

[3] Braverman, Maxim; Kappeler, Thomas Refined analytic torsion, J. Differential Geom., Volume 78 (2008) no. 2, pp. 193-267 http://projecteuclid.org/euclid.jdg/1203000267 | MR | Zbl

[4] Bunke, Ulrich; Olbrich, Martin Selberg zeta and theta functions. A differential operator approach, Math. Research, 83, Akademie-Verlag, Berlin, 1995, 168 pages

[5] Cekić, Mihajlo; Delarue, Benjamin; Dyatlov, Semyon; Paternain, Gabriel P. The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds, Invent. Math., Volume 229 (2022) no. 1, pp. 303-394 | DOI | MR | Zbl

[6] Chapman, Thomas A. Topological invariance of Whitehead torsion, Amer. J. Math., Volume 96 (1974), pp. 488-497 | DOI | MR | Zbl

[7] Chaubet, Yann; Dang, Nguyen Viet Dynamical torsion for contact Anosov flows, 2019 | arXiv

[8] Dang, Nguyen Viet; Guillarmou, Colin; Rivière, Gabriel; Shen, Shu The Fried conjecture in small dimensions, Invent. Math., Volume 220 (2020) no. 2, pp. 525-579 | DOI | MR | Zbl

[9] Dyatlov, Semyon; Zworski, Maciej Ruelle zeta function at zero for surfaces, Invent. Math., Volume 210 (2017) no. 1, pp. 211-229 | DOI | MR | Zbl

[10] Fedosova, Ksenia The twisted Selberg trace formula and the twisted Selberg zeta function for compact orbifolds, Math. Z., Volume 305 (2023) no. 1, 4, 33 pages | DOI | MR | Zbl

[11] Fedosova, Ksenia; Pohl, Anke Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, Selecta Math. (N.S.), Volume 26 (2020) no. 1, 9 | MR | Zbl

[12] Frahm, Jan; Spilioti, Polyxeni Twisted Ruelle zeta function at zero for compact hyperbolic surfaces, J. Number Theory, Volume 243 (2023), pp. 38-61 | DOI | MR | Zbl

[13] Fried, David Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math., Volume 84 (1986), pp. 523-540 | DOI | MR | Zbl

[14] Fried, David Fuchsian groups and Reidemeister torsion, The Selberg trace formula and related topics (Brunswick, Maine, 1984) (Contemp. Math.), Volume 53, American Mathematical Society, Providence, RI, 1986, pp. 141-163 | DOI | MR | Zbl

[15] Gangolli, Ramesh The length spectra of some compact manifolds of negative curvature, J. Differential Geom., Volume 12 (1977) no. 3, pp. 403-424 | DOI | MR | Zbl

[16] Hejhal, Dennis A. The Selberg trace formula for PSL (2,R). Vol. 2, Lect. Notes in Math., 1001, Springer-Verlag, Berlin, 1983 | DOI

[17] Hoffmann, Werner An invariant trace formula for the universal covering group of SL (2,), Ann. Global Anal. Geom., Volume 12 (1994) no. 1, pp. 19-63 | DOI | MR | Zbl

[18] Kitano, Teruaki Reidemeister torsion of Seifert fibered spaces for SL (2;C)-representations, Tokyo J. Math., Volume 17 (1994) no. 1, pp. 59-75 | DOI | MR | Zbl

[19] Markus, Alexander S. Introduction to the spectral theory of polynomial operator pencils, Transl. of Math. Monographs, 71, American Mathematical Society, Providence, RI, 1988

[20] Moscovici, Henri; Stanton, Robert J. R-torsion and zeta functions for locally symmetric manifolds, Invent. Math., Volume 105 (1991) no. 1, pp. 185-216 | DOI | MR | Zbl

[21] Müller, Werner A Selberg trace formula for non-unitary twists, Internat. Math. Res. Notices, Volume 2011 (2011) no. 9, pp. 2068-2109 | MR | Zbl

[22] Müller, Werner The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, Metric and differential geometry (Progress in Math.), Volume 297, Birkhäuser/Springer, Basel, 2012, pp. 317-352 | DOI | MR | Zbl

[23] Müller, Werner Ruelle zeta functions of hyperbolic manifolds and Reidemeister torsion, J. Geom. Anal. (2021), pp. 1-24 | MR | Zbl

[24] Müller, Werner; Pfaff, Jonathan Analytic torsion of complete hyperbolic manifolds of finite volume, J. Funct. Anal., Volume 263 (2012) no. 9, pp. 2615-2675 | DOI | MR | Zbl

[25] Nicolaescu, Liviu I. The Reidemeister torsion of 3-manifolds, De Gruyter studies in math., 30, Walter de Gruyter, 2003 | DOI

[26] Shen, Shu Analytic torsion, dynamical zeta functions, and the Fried conjecture, Anal. PDE, Volume 11 (2018) no. 1, pp. 1-74 | DOI | MR | Zbl

[27] Shen, Shu Analytic torsion, dynamical zeta function, and the Fried conjecture for admissible twists, Comm. Math. Phys., Volume 387 (2021) no. 2, pp. 1215-1255 | DOI | MR | Zbl

[28] Shen, Shu Complex valued analytic torsion and dynamical zeta function on locally symmetric spaces, Internat. Math. Res. Notices (2023) no. 5, pp. 3676-3745 | DOI | MR | Zbl

[29] Shen, Shu; Yu, Jianqing Flat vector bundles and analytic torsion on orbifolds, Comm. Anal. Geom., Volume 30 (2022) no. 3, pp. 575-656 | MR | DOI | Zbl

[30] Spilioti, Polyxeni Twisted Ruelle zeta function and complex-valued analytic torsion, 2020 | arXiv

[31] Turaev, Vladimir Euler structures, nonsingular vector fields, and torsions of Reidemeister type, Math. USSR-Izv., Volume 34 (1990) no. 3, pp. 627-662 | DOI | Zbl

[32] Turaev, Vladimir Introduction to combinatorial torsions, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2001

[33] Turaev, Vladimir Torsions of 3-dimensional manifolds, Progress in Math., 208, Birkhäuser Verlag, Basel, 2002 | DOI

[34] Wallach, Nolan R. On the Selberg trace formula in the case of compact quotient, Bull. Amer. Math. Soc., Volume 82 (1976) no. 2, pp. 171-195 | DOI | MR | Zbl

[35] Wotzke, Artur Die Ruellesche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten, PhD thesis, Bonn, Bonner Mathematische Schriften Nr. 389 (2008) (available at bib.math.uni-bonn.de/downloads/bms/BMS-389.pdf)

[36] Yamaguchi, Yoshikazu Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups, J. reine angew. Math., Volume 784 (2022), pp. 155-176 | DOI | MR | Zbl

Cité par Sources :