Cantor sets with absolutely continuous harmonic measure
[Ensembles de Cantor avec une mesure harmonique absolument continue]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1277-1298

We construct Ahlfors regular Cantor sets K of small dimension in the plane, such that the Hausdorff measure on K is equivalent to the harmonic measure associated to its complement. In particular Green’s function in 2 K satisfies G p (x)dist(x,K) δ whenever dist(x,K)1 and p is far from K.

Nous construisons des ensembles de Cantor K, Ahlfors-réguliers de petite dimension dans le plan, tels que la mesure de Hausdorff sur K est équivalente à la mesure harmonique associée à son complémentaire. En particulier, la fonction de Green dans 2 K satisfait G p (x)dist(x,K) δ lorsque dist(x,K)1 et p est loin de K.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.245
Classification : 31A15, 35J15
Keywords: Harmonic measure, Cantor set, Hausdorff measure
Mots-clés : Mesure harmonique, Ensemble de Cantor, mesure de Hausdorff

David, Guy 1 ; Jeznach, Cole 2 ; Julia, Antoine 1

1 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay 91405 Orsay, France
2 School of Mathematics, University of Minnesota Minneapolis, MN, 55455, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__1277_0,
     author = {David, Guy and Jeznach, Cole and Julia, Antoine},
     title = {Cantor sets with absolutely continuous harmonic measure},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1277--1298},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.245},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.245/}
}
TY  - JOUR
AU  - David, Guy
AU  - Jeznach, Cole
AU  - Julia, Antoine
TI  - Cantor sets with absolutely continuous harmonic measure
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 1277
EP  - 1298
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.245/
DO  - 10.5802/jep.245
LA  - en
ID  - JEP_2023__10__1277_0
ER  - 
%0 Journal Article
%A David, Guy
%A Jeznach, Cole
%A Julia, Antoine
%T Cantor sets with absolutely continuous harmonic measure
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 1277-1298
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.245/
%R 10.5802/jep.245
%G en
%F JEP_2023__10__1277_0
David, Guy; Jeznach, Cole; Julia, Antoine. Cantor sets with absolutely continuous harmonic measure. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1277-1298. doi: 10.5802/jep.245

[ABHM19] Akman, Murat; Bortz, Simon; Hofmann, Steve; Martell, José María Rectifiability, interior approximation and harmonic measure, Ark. Mat., Volume 57 (2019) no. 1, pp. 1-22 | DOI | MR | Zbl

[AHM + 16] Azzam, Jonas; Hofmann, Steve; Martell, José María; Mayboroda, Svitlana; Mourgoglou, Mihalis; Tolsa, Xavier; Volberg, Alexander L. Rectifiability of harmonic measure, Geom. Funct. Anal., Volume 26 (2016) no. 3, pp. 703-728 | DOI | Zbl | MR

[AHM + 20] Azzam, Jonas; Hofmann, Steve; Martell, José María; Mourgoglou, Mihalis; Tolsa, Xavier Harmonic measure and quantitative connectivity: geometric characterization of the L p -solvability of the Dirichlet problem, Invent. Math., Volume 222 (2020) no. 3, pp. 881-993 | DOI | Zbl | MR

[Aik01] Aikawa, Hiroaki Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan, Volume 53 (2001) no. 1, pp. 119-145 | DOI | MR | Zbl

[Anc86] Ancona, Alano On strong barriers and an inequality of Hardy for domains in R n , J. London Math. Soc. (2), Volume 34 (1986) no. 2, pp. 274-290 | DOI | MR | Zbl

[Azz20] Azzam, Jonas Dimension drop for harmonic measure on Ahlfors regular boundaries, Potential Anal., Volume 53 (2020) no. 3, pp. 1025-1041 | DOI | MR | Zbl

[Azz21] Azzam, Jonas Semi-uniform domains and the A property for harmonic measure, Internat. Math. Res. Notices (2021) no. 9, pp. 6717-6771 | DOI | MR | Zbl

[Bat96] Batakis, Athanassios Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. Math., Volume 21 (1996) no. 2, pp. 255-270 | MR | Zbl

[BZ15] Batakis, Athanasios; Zdunik, Anna Hausdorff and harmonic measures on non-homogeneous Cantor sets, Ann. Acad. Sci. Fenn. Math., Volume 40 (2015) no. 1, pp. 279-303 | DOI | MR | Zbl

[Car85] Carleson, Lennart On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 10 (1985), pp. 113-123 | DOI | MR | Zbl

[Dah77] Dahlberg, Björn E. J. Estimates of harmonic measure, Arch. Rational Mech. Anal., Volume 65 (1977) no. 3, pp. 275-288 | DOI | MR | Zbl

[DEM21] David, Guy; Engelstein, Max; Mayboroda, Svitlana Square functions, nontangential limits, and harmonic measure in codimension larger than 1, Duke Math. J., Volume 170 (2021) no. 3, pp. 455-501 | DOI | MR | Zbl

[DFM21] David, Guy; Feneuil, Joseph; Mayboroda, Svitlana Elliptic theory for sets with higher co-dimensional boundaries, Mem. Amer. Math. Soc., 274, no. 1346, American Mathematical Society, Providence, RI, 2021 | DOI

[DFM23] David, Guy; Feneuil, Joseph; Mayboroda, Svitlana Elliptic theory in domains with boundaries of mixed dimension, Astérisque, 442, Société Mathématique de France, Paris, 2023

[DJ90] David, Guy; Jerison, D. Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J., Volume 39 (1990) no. 3, pp. 831-845 | DOI | MR | Zbl

[DM21] David, Guy; Mayboroda, Svitlana Good elliptic operators on Cantor sets, Adv. Math., Volume 383 (2021), 107687, 21 pages | DOI | MR | Zbl

[DM22] David, Guy; Mayboroda, Svitlana Approximation of Green functions and domains with uniformly rectifiable boundaries of all dimensions, Adv. Math., Volume 410 (2022), 108717, 52 pages | DOI | MR | Zbl

[GM05] Garnett, John B.; Marshall, Donald E. Harmonic measure, New Math. Monogr., 2, Cambridge University Press, Cambridge, 2005 | DOI

[JW88] Jones, Peter W.; Wolff, Thomas H. Hausdorff dimension of harmonic measures in the plane, Acta Math., Volume 161 (1988) no. 1-2, pp. 131-144 | DOI | MR | Zbl

[MV86] Makarov, N.; Volberg, Alexander L. On the harmonic measure of discontinuous fractals, 1986 (LOMI preprints)

[Tol23] Tolsa, Xavier The dimension of harmonic measure on some AD-regular flat sets of fractional dimension, 2023 | arXiv

[Vol92] Volberg, Alexander L. On the harmonic measure of self-similar sets on the plane, Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum, New York, 1992, pp. 267-280 | DOI | MR

[Vol93] Volberg, Alexander L. On the dimension of harmonic measure of Cantor repellers, Michigan Math. J., Volume 40 (1993) no. 2, pp. 239-258 | DOI | MR | Zbl

[Vol22] Volberg, Alexander L. One phase problem for two positive harmonic functions: below the codimension 1 threshold, 2022 | arXiv

[Zdu97] Zdunik, Anna Harmonic measure on the Julia set for polynomial-like maps, Invent. Math., Volume 128 (1997) no. 2, pp. 303-327 | DOI | MR | Zbl

Cité par Sources :