[Ensembles de Cantor avec une mesure harmonique absolument continue]
We construct Ahlfors regular Cantor sets of small dimension in the plane, such that the Hausdorff measure on is equivalent to the harmonic measure associated to its complement. In particular Green’s function in satisfies whenever and is far from .
Nous construisons des ensembles de Cantor , Ahlfors-réguliers de petite dimension dans le plan, tels que la mesure de Hausdorff sur est équivalente à la mesure harmonique associée à son complémentaire. En particulier, la fonction de Green dans satisfait lorsque et est loin de .
Accepté le :
Publié le :
Keywords: Harmonic measure, Cantor set, Hausdorff measure
Mots-clés : Mesure harmonique, Ensemble de Cantor, mesure de Hausdorff
David, Guy 1 ; Jeznach, Cole 2 ; Julia, Antoine 1
CC-BY 4.0
@article{JEP_2023__10__1277_0,
author = {David, Guy and Jeznach, Cole and Julia, Antoine},
title = {Cantor sets with absolutely continuous harmonic measure},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1277--1298},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.245},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.245/}
}
TY - JOUR AU - David, Guy AU - Jeznach, Cole AU - Julia, Antoine TI - Cantor sets with absolutely continuous harmonic measure JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 1277 EP - 1298 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.245/ DO - 10.5802/jep.245 LA - en ID - JEP_2023__10__1277_0 ER -
%0 Journal Article %A David, Guy %A Jeznach, Cole %A Julia, Antoine %T Cantor sets with absolutely continuous harmonic measure %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 1277-1298 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.245/ %R 10.5802/jep.245 %G en %F JEP_2023__10__1277_0
David, Guy; Jeznach, Cole; Julia, Antoine. Cantor sets with absolutely continuous harmonic measure. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1277-1298. doi: 10.5802/jep.245
[ABHM19] Rectifiability, interior approximation and harmonic measure, Ark. Mat., Volume 57 (2019) no. 1, pp. 1-22 | DOI | MR | Zbl
[AHM + 16] Rectifiability of harmonic measure, Geom. Funct. Anal., Volume 26 (2016) no. 3, pp. 703-728 | DOI | Zbl | MR
[AHM + 20] Harmonic measure and quantitative connectivity: geometric characterization of the -solvability of the Dirichlet problem, Invent. Math., Volume 222 (2020) no. 3, pp. 881-993 | DOI | Zbl | MR
[Aik01] Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan, Volume 53 (2001) no. 1, pp. 119-145 | DOI | MR | Zbl
[Anc86] On strong barriers and an inequality of Hardy for domains in , J. London Math. Soc. (2), Volume 34 (1986) no. 2, pp. 274-290 | DOI | MR | Zbl
[Azz20] Dimension drop for harmonic measure on Ahlfors regular boundaries, Potential Anal., Volume 53 (2020) no. 3, pp. 1025-1041 | DOI | MR | Zbl
[Azz21] Semi-uniform domains and the property for harmonic measure, Internat. Math. Res. Notices (2021) no. 9, pp. 6717-6771 | DOI | MR | Zbl
[Bat96] Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. Math., Volume 21 (1996) no. 2, pp. 255-270 | MR | Zbl
[BZ15] Hausdorff and harmonic measures on non-homogeneous Cantor sets, Ann. Acad. Sci. Fenn. Math., Volume 40 (2015) no. 1, pp. 279-303 | DOI | MR | Zbl
[Car85] On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 10 (1985), pp. 113-123 | DOI | MR | Zbl
[Dah77] Estimates of harmonic measure, Arch. Rational Mech. Anal., Volume 65 (1977) no. 3, pp. 275-288 | DOI | MR | Zbl
[DEM21] Square functions, nontangential limits, and harmonic measure in codimension larger than 1, Duke Math. J., Volume 170 (2021) no. 3, pp. 455-501 | DOI | MR | Zbl
[DFM21] Elliptic theory for sets with higher co-dimensional boundaries, Mem. Amer. Math. Soc., 274, no. 1346, American Mathematical Society, Providence, RI, 2021 | DOI
[DFM23] Elliptic theory in domains with boundaries of mixed dimension, Astérisque, 442, Société Mathématique de France, Paris, 2023
[DJ90] Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J., Volume 39 (1990) no. 3, pp. 831-845 | DOI | MR | Zbl
[DM21] Good elliptic operators on Cantor sets, Adv. Math., Volume 383 (2021), 107687, 21 pages | DOI | MR | Zbl
[DM22] Approximation of Green functions and domains with uniformly rectifiable boundaries of all dimensions, Adv. Math., Volume 410 (2022), 108717, 52 pages | DOI | MR | Zbl
[GM05] Harmonic measure, New Math. Monogr., 2, Cambridge University Press, Cambridge, 2005 | DOI
[JW88] Hausdorff dimension of harmonic measures in the plane, Acta Math., Volume 161 (1988) no. 1-2, pp. 131-144 | DOI | MR | Zbl
[MV86] On the harmonic measure of discontinuous fractals, 1986 (LOMI preprints)
[Tol23] The dimension of harmonic measure on some AD-regular flat sets of fractional dimension, 2023 | arXiv
[Vol92] On the harmonic measure of self-similar sets on the plane, Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum, New York, 1992, pp. 267-280 | DOI | MR
[Vol93] On the dimension of harmonic measure of Cantor repellers, Michigan Math. J., Volume 40 (1993) no. 2, pp. 239-258 | DOI | MR | Zbl
[Vol22] One phase problem for two positive harmonic functions: below the codimension 1 threshold, 2022 | arXiv
[Zdu97] Harmonic measure on the Julia set for polynomial-like maps, Invent. Math., Volume 128 (1997) no. 2, pp. 303-327 | DOI | MR | Zbl
Cité par Sources :





