[Des modèles stochastiques d’évolution aux équations de Hamilton-Jacobi]
We consider a stochastic model for the evolution of a discrete population structured by a trait with values on a finite grid of the torus, and with mutation and selection. We focus on a parameter scaling where population is large, individual mutations are small but not rare, and the grid mesh is much smaller than the size of mutation steps. When considering the evolution of the population in long time scales, the contribution of small sub-populations may strongly influence the dynamics. Our main result quantifies the asymptotic dynamics of subpopulation sizes on a logarithmic scale. We establish that under our rescaling, the stochastic discrete process converges to the viscosity solution of a Hamilton-Jacobi equation. The proof makes use of almost sure maximum principles and careful control of the martingale parts.
Nous considérons un modèle stochastique pour l’évolution d’une population discrète structurée en trait à valeurs dans une grille finie du tore, avec mutation et sélection. On se place dans une limite d’échelle de grande population, de petites mutations (mais pas rares), et où le maillage tend vers zéro. En temps long, la contribution de petites sous-populations peut fortement influencer la dynamique. Nous montrons que dans ce cadre, le processus stochastique discret converge sur une échelle logarithmique vers la solution de viscosité d’une équation de Hamilton-Jacobi. La preuve fait appel à un principe du maximum presque-sûr et à des estimées fines des parties martingales.
Accepté le :
Publié le :
Keywords: Stochastic birth death models, large population approximation, selection, mutation, viscosity solution, maximum principle, Hamilton-Jacobi equation
Mots-clés : Processus de naissances et morts, processus aléatoire, approximation grande population, sélection, mutation, solution de viscosité, principe du maximum, équation de Hamilton-Jacobi
Champagnat, Nicolas 1 ; Méléard, Sylvie 2 ; Mirrahimi, Sepideh 3 ; Tran, Viet Chi 4
CC-BY 4.0
@article{JEP_2023__10__1247_0,
author = {Champagnat, Nicolas and M\'el\'eard, Sylvie and Mirrahimi, Sepideh and Tran, Viet Chi},
title = {Filling the gap between individual-based evolutionary models and {Hamilton-Jacobi} equations},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1247--1275},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.244},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.244/}
}
TY - JOUR AU - Champagnat, Nicolas AU - Méléard, Sylvie AU - Mirrahimi, Sepideh AU - Tran, Viet Chi TI - Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 1247 EP - 1275 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.244/ DO - 10.5802/jep.244 LA - en ID - JEP_2023__10__1247_0 ER -
%0 Journal Article %A Champagnat, Nicolas %A Méléard, Sylvie %A Mirrahimi, Sepideh %A Tran, Viet Chi %T Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 1247-1275 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.244/ %R 10.5802/jep.244 %G en %F JEP_2023__10__1247_0
Champagnat, Nicolas; Méléard, Sylvie; Mirrahimi, Sepideh; Tran, Viet Chi. Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1247-1275. doi: 10.5802/jep.244
[1] Stochastic models for structured populations. Scaling limits and long time behavior, Math. Biosciences Institute Lect. Series. Stochastics in Biological Systems, 1.4, Springer, Cham, 2015 | DOI
[2] Solutions de viscosité des équations de Hamilton-Jacobi, Math. & Applications, 17, Springer-Verlag, Paris, 1994
[3] Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., Volume 16 (2009) no. 3, pp. 321-340 | MR | Zbl | DOI
[4] Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential, Stochastic Process. Appl., Volume 125 (2015) no. 5, pp. 2096-2145 | MR | Zbl | DOI
[5] Branching out, Probability and mathematical genetics (London Math. Soc. Lecture Note Ser.), Volume 378, Cambridge University Press, Cambridge, 2010, pp. 113-134 | DOI | MR | Zbl
[6] Stochastic dynamics for adaptation and evolution of microorganisms, European Congress of Math., European Mathematical Society, Zürich, 2018, pp. 525-550 | DOI | Zbl
[7] A stochastic adaptive dynamics model for bacterial populations with mutation, dormancy and transfer, ALEA Lat. Am. J. Probab. Math. Stat., Volume 20 (2023) no. 1, pp. 313-357 | MR | Zbl | DOI
[8] Crossing a fitness valley as a metastable transition in a stochastic population model, Ann. Appl. Probab., Volume 29 (2019) no. 6, pp. 3541-3589 | MR | Zbl | DOI
[9] A spatially- dependent fragmentation process, 2021 | arXiv
[10] Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches, CEMRACS 2018 (ESAIM Proc. Surveys), Volume 67, EDP Sci., Les Ulis, 2020, pp. 135-160 | MR | Zbl | DOI
[11] A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Process. Appl., Volume 116 (2006) no. 8, pp. 1127-1160 | MR | Zbl | DOI
[12] A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources, Ann. Appl. Probab., Volume 29 (2019) no. 4, pp. 2175-2216 | MR | Zbl | DOI
[13] Polymorphic evolution sequence and evolutionary branching, Probab. Theory Relat. Fields, Volume 151 (2011) no. 1-2, pp. 45-94 | MR | Zbl | DOI
[14] Stochastic analysis of emergence of evolutionary cyclic behavior in population dynamics with transfer, Ann. Appl. Probab., Volume 31 (2021) no. 4, pp. 1820-1867 | MR | Zbl | DOI
[15] Stochastic individual-based models with power law mutation rate on a general finite trait space, Electron. J. Probab., Volume 26 (2021), 123, 37 pages | MR | Zbl | DOI
[16] The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. Math. Biol., Volume 34 (1996) no. 5-6, pp. 579-612 | DOI | MR | Zbl
[17] The dynamics of adaptation: An illuminating example and a Hamilton–Jacobi approach, Theoret. Population Biol., Volume 67 (2005) no. 4, pp. 257-271 | DOI | Zbl
[18] Traveling waves of selective sweeps, Ann. Appl. Probab., Volume 21 (2011) no. 2, pp. 699-744 | DOI | MR | Zbl
[19] Ancestral lineages in mutation selection equilibria with moving optimum, Bull. Math. Biol., Volume 84 (2022) no. 9, 93, 43 pages | DOI | MR | Zbl
[20] Small populations corrections for selection-mutation models, Netw. Heterog. Media, Volume 7 (2012) no. 4, pp. 805-836 | DOI | MR | Zbl
[21] Limit theorems for stochastic processes, Grundlehren Math. Wissen., 288, Springer-Verlag, Berlin, 2003 | DOI
[22] On the Skorokhod topology, Ann. Inst. H. Poincaré Probab. Statist., Volume 22 (1986) no. 3, pp. 263-285 | MR | Numdam | Zbl
[23] Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. in Appl. Probab., Volume 18 (1986) no. 1, pp. 20-65 | DOI | MR | Zbl
[24] Horizontal gene transfer in eukaryotic evolution, Nat. Rev. Genet. (2008) no. 8, pp. 605-618 | DOI
[25] The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors, Genetics, Volume 94 (1980) no. 2, pp. 425-443 | DOI | MR
[26] Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, Volume 36 (2011) no. 6, pp. 1071-1098 | DOI | MR | Zbl
[27] Spatial dynamics of a population in a heterogeneous environment, 2021 | arXiv
[28] Maximal displacement of a branching random walk in time-inhomogeneous environment, Stochastic Process. Appl., Volume 125 (2015) no. 10, pp. 3958-4019 | DOI | MR | Zbl
[29] Adaptative dynamics: a geometrical study of the consequences of nearly faithful reproduction, Proc. Colloquium (Amsterdam, Jan. 1995) (Strien, S.J. Van; Verduyn Lunel, S.M., eds.) (Stochastic and Spatial Structures of Dynamical Systems), Volume 45, North-Holland, 1996, pp. 183-231
[30] A singular Hamilton-Jacobi equation modeling the tail problem, SIAM J. Math. Anal., Volume 44 (2012) no. 6, pp. 4297-4319 | DOI | MR | Zbl
[31] Lateral gene transfer and the nature of bacterial innovation, Nature, Volume 405 (2000), pp. 299-304 | DOI
[32] Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., Volume 57 (2008) no. 7, pp. 3275-3301 | DOI | MR | Zbl
[33] Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations, Math. Med. Biol., Volume 27 (2010) no. 3, pp. 195-210 | DOI | MR | Zbl
[34] 20 Questions on adaptive dynamics, J. Evol. Biol., Volume 18 (2005) no. 5, pp. 1139-1154 | DOI
Cité par Sources :





