[Dimension de Hausdorff d’ensembles limites pour les représentations projectivement Anosov]
We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in is bounded between two critical exponents associated respectively to a highest weight and a simple root.
Nous étudions la relation entre les exposants critiques et les dimensions de Hausdorff des ensembles limites pour les représentations projectivement Anosov. Nous prouvons que la dimension de Hausdorff de l’ensemble limite symétrique dans est bornée par deux exposants critiques associés respectivement à un plus haut poids et à une racine simple.
Accepté le :
Publié le :
Keywords: Critical exponent, Hausdorff dimension, Anosov representation, Hilbert geometry
Mots-clés : Exposant critique, dimension de Hausdorff, représentation Anosov, géométrie de Hilbert
Glorieux, Olivier 1 ; Monclair, Daniel 2 ; Tholozan, Nicolas 3
CC-BY 4.0
@article{JEP_2023__10__1157_0,
author = {Glorieux, Olivier and Monclair, Daniel and Tholozan, Nicolas},
title = {Hausdorff dimension of limit sets for projective {Anosov} representations},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1157--1193},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.241},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.241/}
}
TY - JOUR AU - Glorieux, Olivier AU - Monclair, Daniel AU - Tholozan, Nicolas TI - Hausdorff dimension of limit sets for projective Anosov representations JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 1157 EP - 1193 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.241/ DO - 10.5802/jep.241 LA - en ID - JEP_2023__10__1157_0 ER -
%0 Journal Article %A Glorieux, Olivier %A Monclair, Daniel %A Tholozan, Nicolas %T Hausdorff dimension of limit sets for projective Anosov representations %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 1157-1193 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.241/ %R 10.5802/jep.241 %G en %F JEP_2023__10__1157_0
Glorieux, Olivier; Monclair, Daniel; Tholozan, Nicolas. Hausdorff dimension of limit sets for projective Anosov representations. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1157-1193. doi: 10.5802/jep.241
[AMS95] Semigroups containing proximal linear maps, Israel J. Math., Volume 91 (1995) no. 1-3, pp. 1-30 | DOI | MR | Zbl
[Ben97] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47 | DOI | Zbl
[Ben01] Convexes divisibles, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001) no. 5, pp. 387-390 | DOI | MR | Zbl
[CK02] Growth of conjugacy classes in Gromov hyperbolic groups, Geom. Funct. Anal., Volume 12 (2002) no. 3, pp. 464-478 | DOI | MR | Zbl
[CM14] Finitude géométrique en géométrie de Hilbert, Ann. Inst. Fourier (Grenoble), Volume 64 (2014) no. 6, pp. 2299-2377 | DOI | Numdam | Zbl
[Coo93] Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math., Volume 159 (1993) no. 2, pp. 241-270 http://projecteuclid.org/euclid.pjm/1102634263 | DOI | MR | Zbl
[Cra09] Entropies of strictly convex projective manifolds, J. Modern Dyn., Volume 3 (2009) no. 4, pp. 511-547 | DOI | MR | Zbl
[Cra11] Dynamics and entropies of Hilbert metrics, Ph. D. Thesis, Université de Strasbourg; Ruhr-Universität, Bochum (2011) | MR
[CTT19] The geometry of maximal representations of surface groups into , Duke Math. J., Volume 168 (2019) no. 15, pp. 2873-2949 | DOI | MR | Zbl
[DGK17] Convex cocompact actions in real projective geometry, 2017 to appear in Ann. Sci. École Norm. Sup. (4) | arXiv
[DGK18] Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata, Volume 192 (2018), pp. 87-126 | DOI | MR | Zbl
[DK22] Patterson-Sullivan theory for Anosov subgroups, Trans. Amer. Math. Soc., Volume 375 (2022) no. 12, pp. 8687-8737 | DOI | MR | Zbl
[DOP00] Séries de Poincaré des groupes géométriquement finis, Israel J. Math., Volume 118 (2000), pp. 109-124 | DOI | Zbl
[Ebe96] Geometry of nonpositively curved manifolds, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 1996 | MR
[GGKW17] Anosov representations and proper actions, Geom. Topol., Volume 21 (2017) no. 1, pp. 485-584 | DOI | MR | Zbl
[GM21] Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry, Internat. Math. Res. Notices (2021) no. 18, pp. 13661-13729 | DOI | MR | Zbl
[Gro87] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI | MR | Zbl
[Gui19] Groupes convexes-cocompacts en rang supérieur [d’après Labourie, Kapovich, Leeb, Porti,...], Séminaire Bourbaki, volume 2017/2018 (Astérisque), Volume 414, Société Mathématique de France, Paris, 2019, pp. 95-123 (Exp. no. 1138) | DOI | MR | Zbl
[GW12] Anosov representations: domains of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438 | DOI | MR | Zbl
[Hel01] Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Math., 34, American Mathematical Society, Providence, RI, 2001 | DOI
[KLP17] Anosov subgroups: dynamical and geometric characterizations, European J. Math., Volume 3 (2017) no. 4, pp. 808-898 | DOI | MR | Zbl
[KLP18] A Morse lemma for quasigeodesics in symmetric spaces and Euclidean buildings, Geom. Topol., Volume 22 (2018) no. 7, pp. 3827-3923 | DOI | MR | Zbl
[Lab06] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR | Zbl
[Lin04] Measures on the geometric limit set in higher rank symmetric spaces, Séminaire de Théorie Spectrale et Géométrie. Année 2003–2004, Volume 22, Univ. Grenoble I, Saint-Martin-d’Hères, 2004, pp. 59-69 | DOI | MR | Numdam | Zbl
[Mes07] Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI | MR | Zbl
[PS17] Eigenvalues and entropy of a Hitchin representation, Invent. Math., Volume 209 (2017) no. 3, pp. 885-925 | DOI | MR | Zbl
[PSW19] Anosov representations with Lipschitz limit set, 2019 | arXiv
[PSW21] Conformality for a robust class of non-conformal attractors, J. reine angew. Math., Volume 774 (2021), pp. 1-51 | DOI | MR | Zbl
[Qui02a] Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv., Volume 77 (2002) no. 3, pp. 563-608 | DOI | MR | Zbl
[Qui02b] Mesures de Patterson-Sullivan en rang supérieur, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 776-809 | DOI | Zbl
[Rob03] Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. France (N.S.), 95, Société Mathématique de France, Paris, 2003 | DOI | MR | Numdam
[Sam14] Quantitative properties of convex representations, Comment. Math. Helv., Volume 89 (2014) no. 2, pp. 443-488 | DOI | MR | Zbl
[Sul79] The density at infinity of a discrete group of hyperbolic motions, Publ. Math. Inst. Hautes Études Sci. (1979) no. 50, pp. 171-202 | MR | DOI | Numdam | Zbl
[Zim21] Projective Anosov representations, convex cocompact actions, and rigidity, J. Differential Geom., Volume 119 (2021) no. 3, pp. 513-586 | DOI | MR | Zbl
Cité par Sources :





