Riemannian Anosov extension and applications
[Extension d’Anosov riemannienne et applications]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 945-987

Let Σ be a Riemannian manifold with strictly convex spherical boundary. Assuming absence of conjugate points and that the trapped set is hyperbolic, we show that Σ can be isometrically embedded into a closed Riemannian manifold with Anosov geodesic flow. We use this embedding to provide a direct link between the classical Livshits theorem for Anosov flows and the Livshits theorem for the X-ray transform which appears in the boundary rigidity program. Also, we give an application for lens rigidity in a conformal class.

Soit Σ une variété riemannienne avec bord sphérique strictement convexe. Lorsque la métrique n’a pas de points conjugués et que l’ensemble capté est hyperbolique, nous montrons que Σ peut être plongée isométriquement dans une variété riemannienne fermée dont le flot géodésique est Anosov. Nous utilisons ce plongement pour établir un lien direct entre le théorème de Livshits classique pour les flots d’Anosov et le théorème de Livshits pour la transformée en rayons X qui apparaît dans le programme de rigidité des bords. Nous donnons également une application pour la rigidité lenticulaire dans une classe conforme.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.237
Classification : 37D40, 37D20, 53C24, 53C21
Keywords: Anosov flow, geodesic flow, lens rigidity, Livshits theorem, trapped sets
Mots-clés : Flot Anosov, flot géodésique, rigidité lenticulaire, théorème de Livshits, ensemble capté

Chen, Dong 1 ; Erchenko, Alena 2 ; Gogolev, Andrey 1

1 Department of Mathematics, The Ohio State University 100 Math Tower, 231 W 18th Ave, Columbus, OH 43210, USA
2 Department of Mathematics, The University of Chicago Eckhart Hall, 5734 S University Ave, Chicago, IL 60637, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__945_0,
     author = {Chen, Dong and Erchenko, Alena and Gogolev, Andrey},
     title = {Riemannian {Anosov} extension and applications},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {945--987},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.237},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.237/}
}
TY  - JOUR
AU  - Chen, Dong
AU  - Erchenko, Alena
AU  - Gogolev, Andrey
TI  - Riemannian Anosov extension and applications
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 945
EP  - 987
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.237/
DO  - 10.5802/jep.237
LA  - en
ID  - JEP_2023__10__945_0
ER  - 
%0 Journal Article
%A Chen, Dong
%A Erchenko, Alena
%A Gogolev, Andrey
%T Riemannian Anosov extension and applications
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 945-987
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.237/
%R 10.5802/jep.237
%G en
%F JEP_2023__10__945_0
Chen, Dong; Erchenko, Alena; Gogolev, Andrey. Riemannian Anosov extension and applications. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 945-987. doi: 10.5802/jep.237

[BI10] Burago, Dmitri; Ivanov, Sergei Boundary rigidity and filling volume minimality of metrics close to a flat one, Ann. of Math. (2), Volume 171 (2010) no. 2, pp. 1183-1211 | MR | Zbl | DOI

[BI13] Burago, Dmitri; Ivanov, Sergei Area minimizers and boundary rigidity of almost hyperbolic metrics, Duke Math. J., Volume 162 (2013) no. 7, pp. 1205-1248 | Zbl | MR | DOI

[dlLMM86] de la Llave, Rafael; Marco, José Manuel; Moriyón, Roberto Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation, Ann. of Math. (2), Volume 123 (1986) no. 3, pp. 537-611 | MR | Zbl | DOI

[DP03] Donnay, Victor J; Pugh, Charles Anosov geodesic flows for embedded surfaces, Geometric methods in dynamics. II (Astérisque), Volume 287, Société Mathématique de France, Paris, 2003, pp. 61-69 | Zbl | Numdam

[DSW21] Delarue, Benjamin; Schütte, Philipp; Weich, Tobias Resonances and weighted zeta functions for obstacle scattering via smooth models, 2021 | arXiv

[Ebe73] Eberlein, Patrick When is a geodesic flow of Anosov type? I, J. Differential Geom., Volume 8 (1973) no. 3, pp. 437-463 | MR | Zbl

[EK19] Erchenko, Alena; Katok, Anatole Flexibility of entropies for surfaces of negative curvature, Israel J. Math., Volume 232 (2019) no. 2, pp. 631-676 | MR | Zbl | DOI

[EO80] Eschenburg, Jost-Hinrich; O’Sullivan, John J Jacobi tensors and Ricci curvature, Math. Ann., Volume 252 (1980) no. 1, pp. 1-26 | MR | Zbl | DOI

[FJ93] Farrell, F. Thomas; Jones, Lowell Edwin Nonuniform hyperbolic lattices and exotic smooth structures, J. Differential Geom., Volume 38 (1993) no. 2, pp. 235-261 | MR | Zbl

[GM18] Guillarmou, Colin; Mazzucchelli, Marco Marked boundary rigidity for surfaces, Ergodic Theory Dynam. Systems, Volume 38 (2018) no. 4, pp. 1459-1478 | MR | Zbl | DOI

[Gro94] Gromov, Mikhail Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano, Volume 61 (1994), pp. 9-123 | MR | DOI

[Gui17] Guillarmou, Colin Lens rigidity for manifolds with hyperbolic trapped sets, J. Amer. Math. Soc., Volume 30 (2017) no. 2, pp. 561-599 | MR | Zbl | DOI

[Gul75] Gulliver, Robert On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., Volume 210 (1975), pp. 185-201 | MR | Zbl | DOI

[HPPS70] Hirsch, Morris; Palis, Jacob; Pugh, Charles; Shub, Michael Neighborhoods of hyperbolic sets, Invent. Math., Volume 9 (1970), pp. 121-134 | MR | Zbl | DOI

[Kat88] Katok, Anatole Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dynam. Systems, Volume 8 (1988), pp. 139-152 | Zbl | MR | DOI

[Lef19] Lefeuvre, Thibault On the s-injectivity of the x-ray transform on manifolds with hyperbolic trapped set, Nonlinearity, Volume 32 (2019) no. 4, pp. 1275-1295 | MR | Zbl | DOI

[Lef20] Lefeuvre, Thibault Local marked boundary rigidity under hyperbolic trapping assumptions, J. Geom. Anal., Volume 30 (2020) no. 1, pp. 448-465 | MR | Zbl | DOI

[Liv71] Livsic, Alexander Certain properties of the homology of Y-systems, Mat. Zametki, Volume 10 (1971), pp. 555-564 | MR

[LSU03] Lassas, Matti; Sharafutdinov, Vladimir; Uhlmann, Gunther Semiglobal boundary rigidity for Riemannian metrics, Math. Ann., Volume 325 (2003) no. 4, pp. 767-793 | MR | Zbl | DOI

[Mal40] Malcev, A. On isomorphic matrix representations of infinite groups, Mat. Sb., Volume 8 (50) (1940), pp. 405-422 | Zbl

[Mic81] Michel, René Sur la rigidité imposée par la longueur des géodésiques, Invent. Math., Volume 65 (1981) no. 1, pp. 71-83 | MR | Zbl | DOI

[MR78] Mukhometov, Ravil; Romanov, Vladimir On the problem of finding an isotropic Riemannian metric in an n-dimensional space, Dokl. Akad. Nauk SSSR, Volume 243 (1978) no. 1, pp. 41-44 | MR

[PU05] Pestov, Leonid; Uhlmann, Gunther Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. (2), Volume 161 (2005) no. 2, pp. 1093-1110 | MR | Zbl | DOI

[Rug07] Ruggiero, Rafael O Dynamics and global geometry of manifolds without conjugate points, Ensaios Matemáticos, 12, Sociedade Brasileira de Matemática, Rio de Janeiro, 2007

[SU09] Stefanov, Plamen; Uhlmann, Gunther Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds, J. Differential Geom., Volume 82 (2009) no. 2, pp. 383-409 | MR | Zbl

[SUV21] Stefanov, Plamen; Uhlmann, Gunther; Vasy, András Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge, Ann. of Math. (2), Volume 194 (2021) no. 1, pp. 1-95 | MR | Zbl | DOI

[Var09] Vargo, James A proof of lens rigidity in the category of analytic metrics, Math. Res. Lett., Volume 16 (2009) no. 6, pp. 1057-1069 | MR | Zbl | DOI

Cité par Sources :