Effective operators on an attractive magnetic edge
[Opérateurs effectifs sur une discontinuité magnétique]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 917-944

The semiclassical Laplacian with discontinuous magnetic field is considered in two dimensions. The magnetic field is sign changing with exactly two distinct values and is discontinuous along a smooth closed curve, thereby producing an attractive magnetic edge. Various accurate spectral asymptotics are established by means of a dimensional reduction involving a microlocal phase space localization allowing to deal with the discontinuity of the field.

Cet article s’intéresse au laplacien avec champ magnétique discontinu dans la limite semi-classique. Le champ est supposé prendre exactement deux valeurs non nulles de signes opposés et changer de signe le long d’une courbe fermée et régulière, la « frontière magnétique ». Nous établissons diverses asymptotiques spectrales à l’aide d’une réduction de dimension mettant en jeu une localisation dans l’espace des phases et permettant de traiter la discontinuité du champ magnétique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.236
Classification : 81Q20
Keywords: Magnetic Laplacian, discontinuous magnetic field, semiclassical analysis, spectrum
Mots-clés : Laplacien magnétique, champ magnétique discontinu, semi-classique, spectre

Fournais, Søren 1 ; Helffer, Bernard 2 ; Kachmar, Ayman 3 ; Raymond, Nicolas 4

1 Department of Mathematical Sciences, University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
2 Nantes Université, Laboratoire Jean Leray Nantes, France
3 Lebanese University, Department of Mathematics Nabatiye, Lebanon
4 Univ Angers, CNRS, LAREMA, Institut Universitaire de France, SFR MATHSTIC F-49000 Angers, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__917_0,
     author = {Fournais, S{\o}ren and Helffer, Bernard and Kachmar, Ayman and Raymond, Nicolas},
     title = {Effective operators on an attractive magnetic edge},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {917--944},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.236},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.236/}
}
TY  - JOUR
AU  - Fournais, Søren
AU  - Helffer, Bernard
AU  - Kachmar, Ayman
AU  - Raymond, Nicolas
TI  - Effective operators on an attractive magnetic edge
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 917
EP  - 944
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.236/
DO  - 10.5802/jep.236
LA  - en
ID  - JEP_2023__10__917_0
ER  - 
%0 Journal Article
%A Fournais, Søren
%A Helffer, Bernard
%A Kachmar, Ayman
%A Raymond, Nicolas
%T Effective operators on an attractive magnetic edge
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 917-944
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.236/
%R 10.5802/jep.236
%G en
%F JEP_2023__10__917_0
Fournais, Søren; Helffer, Bernard; Kachmar, Ayman; Raymond, Nicolas. Effective operators on an attractive magnetic edge. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 917-944. doi: 10.5802/jep.236

[1] Assaad, Wafaa; Helffer, Bernard; Kachmar, Ayman Semi-classical eigenvalue estimates under magnetic steps, 2021 (to appear in Anal. PDE) | arXiv

[2] Assaad, Wafaa; Kachmar, Ayman Lowest energy band function for magnetic steps, J. Spectral Theory, Volume 12 (2022) no. 2, pp. 813-833 | DOI | MR | Zbl

[3] Barbaroux, Jean-Marie; Le Treust, Loïc; Raymond, Nicolas; Stockmeyer, Edgardo On the Dirac bag model in strong magnetic fields, 2020 (to appear in Pure and Applied Analysis) | HAL

[4] Bonnaillie-Noël, Virginie On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners, Asymptot. Anal., Volume 41 (2005) no. 3-4, pp. 215-258 | Zbl

[5] Bonnaillie-Noël, Virginie; Dauge, Monique Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, Volume 7 (2006) no. 5, pp. 899-931 | DOI | Zbl

[6] Bonnaillie-Noël, Virginie; Hérau, Frédéric; Raymond, Nicolas Purely magnetic tunneling effect in two dimensions, Invent. Math., Volume 227 (2022) no. 2, pp. 745-793 | DOI | MR | Zbl

[7] Fahs, Rayan; Le Treust, Loïc; Raymond, Nicolas; Vũ Ngọc, San Edge states for the Robin magnetic Laplacian (2022) (Manuscript in preparation)

[8] Fournais, Søren; Helffer, Bernard Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 http://aif.cedram.org/item?id=AIF_2006__56_1_1_0 | DOI | MR | Numdam | Zbl

[9] Fournais, Søren; Helffer, Bernard Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Appl., 77, Birkhäuser Boston, Inc., Boston, MA, 2010 | DOI

[10] Fournais, Søren; Helffer, Bernard; Kachmar, Ayman Tunneling effect induced by a curved magnetic edge, The physics and mathematics of Elliott Lieb—the 90th anniversary. Vol. I, EMS Press, Berlin, 2022, pp. 315-350 | DOI | Zbl

[11] Fournais, Søren; Kachmar, Ayman On the energy of bound states for magnetic Schrödinger operators, J. London Math. Soc. (2), Volume 80 (2009) no. 1, pp. 233-255 | DOI | Zbl

[12] Frank, Rupert L. On the asymptotic number of edge states for magnetic Schrödinger operators, Proc. London Math. Soc. (3), Volume 95 (2007) no. 1, pp. 1-19 | DOI | Zbl

[13] Gérard, C.; Martinez, A.; Sjöstrand, J. A mathematical approach to the effective Hamiltonian in perturbed periodic problems, Comm. Math. Phys., Volume 142 (1991) no. 2, pp. 217-244 http://projecteuclid.org/euclid.cmp/1104248583 | DOI | MR | Zbl

[14] Giunti, Arianna; Velázquez, Juan J. L. Edge states for generalized Iwatsuka models: magnetic fields having a fast transition across a curve, Ann. Henri Poincaré, Volume 24 (2023) no. 1, pp. 73-105 | DOI | Zbl

[15] Helffer, Bernard; Morame, Abderemane Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR | Zbl

[16] Helffer, Bernard; Sjöstrand, J. Multiple wells in the semi-classical limit. I, Comm. Partial Differential Equations, Volume 9 (1984), pp. 337-408 | DOI | Zbl

[17] Helffer, Bernard; Sjöstrand, J. Puits multiples en mécanique semi-classique. V. Étude des minipuits, Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 133-186 | Zbl

[18] Helffer, Bernard; Sjöstrand, J. Puits multiples en mécanique semi-classique. VI. Cas des puits sous-variétés, Ann. Inst. H. Poincaré Phys. Théor., Volume 46 (1987) no. 4, pp. 353-372 | Numdam | Zbl

[19] Hislop, P. D.; Popoff, N.; Raymond, N.; Sundqvist, M. P. Band functions in the presence of magnetic steps, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 1, pp. 161-184 | DOI | MR | Zbl

[20] Kachmar, Ayman; Khochman, Abdallah Spectral asymptotics for magnetic Schrödinger operators in domains with corners, J. Spectral Theory, Volume 3 (2013) no. 4, pp. 553-574 | DOI | Zbl

[21] Keraval, Pierig Formules de Weyl par réduction de dimension. Applications à des laplaciens électro-magnétiques, Ph. D. Thesis, Université de Rennes 1 (2018) http://www.theses.fr/2018REN1S093

[22] Martinez, André A general effective Hamiltonian method, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 18 (2007) no. 3, pp. 269-277 | Zbl | MR | DOI

[23] Raymond, Nicolas Bound states of the magnetic Schrödinger operator, EMS Tracts in Math., 27, European Mathematical Society, Zürich, 2017, xiv+380 pages | DOI

[24] Simon, Barry The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Physics, Volume 97 (1976) no. 2, pp. 279-288 | Zbl | DOI

[25] Zworski, Maciej Semiclassical analysis, Graduate Studies in Math., 138, American Mathematical Society, Providence, RI, 2012 | DOI

Cité par Sources :