A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations
[Une preuve en dimension finie d’un résultat de Hutchings sur les pseudo-rotations irrationnelles]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 837-866

We prove that the Calabi invariant of a C 1 pseudo-rotation of the unit disk, that coincides with a rotation on the unit circle, is equal to its rotation number. This result has been shown some years ago by Michael Hutchings (under very slightly stronger hypothesis). While the original proof used Embedded Contact Homology techniques, the proof of this article uses generating functions and the dynamics of the induced gradient flow.

Nous montrons que l’invariant de Calabi d’une pseudo-rotation irrationnelle de classe C 1 qui coïncide avec une rotation sur le bord, est égal au nombre de rotation. Ce résultat a été démontré il y a quelques années par Michael Hutchings (sous des hypothèses légèrement plus fortes). Alors que la démonstration originale s’inscrit dans le formalisme de l’« Embedded Contact Homology », la preuve que nous donnons utilise les fonctions génératrices et les propriétés dynamiques du flot de gradient associé.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.234
Classification : 37E30, 37E45, 37J11
Keywords: Irrational pseudo-rotation, Calabi invariant, generating function, rotation number, linking number
Mots-clés : Pseudo-rotation irrationnelle, invariant de Calabi, fonction génératrice, nombre de rotation, nombre d’enlacement

Le Calvez, Patrice 1

1 Sorbonne Université, Université Paris-Cité, CNRS, IMJ-PRG F-75005, Paris, France & Institut Universitaire de France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__837_0,
     author = {Le Calvez, Patrice},
     title = {A finite dimensional proof of a result of {Hutchings} about irrational pseudo-rotations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {837--866},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.234},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.234/}
}
TY  - JOUR
AU  - Le Calvez, Patrice
TI  - A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 837
EP  - 866
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.234/
DO  - 10.5802/jep.234
LA  - en
ID  - JEP_2023__10__837_0
ER  - 
%0 Journal Article
%A Le Calvez, Patrice
%T A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 837-866
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.234/
%R 10.5802/jep.234
%G en
%F JEP_2023__10__837_0
Le Calvez, Patrice. A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 837-866. doi: 10.5802/jep.234

[AI16] Asaoka, Masayuki; Irie, Kei A C closing lemma for Hamiltonian diffeomorphisms of closed surfaces, Geom. Funct. Anal., Volume 26 (2016) no. 5, pp. 1245-1254 | Zbl | MR | DOI

[Bec20] Bechara, D. Asymptotic action and asymptotic winding number for area-preserving diffeomorphisms of the disk, 2020 | arXiv

[Bra15] Bramham, Barney Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves, Ann. of Math. (2), Volume 181 (2015) no. 3, pp. 1033-1086 | MR | Zbl | DOI

[Cal70] Calabi, Eugenio On the group of automorphisms of a symplectic manifold, Problems in analysis (Sympos. in honor of Salomon Bochner, Princeton, NJ, 1969), Princeton Univ. Press, Princeton, NJ, 1970, pp. 1-26 | Zbl

[CGHS20] Cristofaro-Gardiner, D.; Humilière, V.; Seyfaddini, S. Proof of the simplicity conjecture, 2020 | arXiv

[CGPZ21] Cristofaro-Gardiner, D.; Prasad, R.; Zhang, B. Periodic Floer homology and the smooth closing lemma for area-preserving surface diffeomorphisms, 2021 | arXiv

[Cha84] Chaperon, Marc Une idée du type « géodésiques brisées »pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math., Volume 298 (1984) no. 13, pp. 293-296 | Zbl

[EH21] Edtmair, Oliver; Hutchings, Michael PFH spectral invariants and C closing lemmas, 2021 | arXiv

[Fat80] Fathi, A. Transformations et homéomorphismes préservant la mesure; Systèmes dynamiques minimaux, Ph. D. Thesis, Université d’Orsay (1980)

[Fra88] Franks, John Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. (2), Volume 128 (1988) no. 1, pp. 139-151 Erratum: Ibid., 164 (2006), no. 3, p. 1097–1098 | Zbl | DOI

[GG97] Gambaudo, Jean-Marc; Ghys, Étienne Enlacements asymptotiques, Topology, Volume 36 (1997) no. 6, pp. 1355-1379 | MR | Zbl | DOI

[Hut16] Hutchings, Michael Mean action and the Calabi invariant, J. Modern Dyn., Volume 10 (2016), pp. 511-539 | Zbl | MR | DOI

[Jol21] Joly, B. About barcodes and Calabi invariant for Hamiltonian homeomorphisms of surfaces, Ph. D. Thesis, Sorbonne Université (2021)

[LC99] Le Calvez, Patrice Décomposition des difféomorphismes du tore en applications déviant la verticale, Mém. Soc. Math. France (N.S.), 79, Société Mathématique de France, Paris, 1999 | Numdam | DOI

[LC16] Le Calvez, Patrice A finite dimensional approach to Bramham’s approximation theorem, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 5, pp. 2169-2202 http://aif.cedram.org/... | DOI | MR | Numdam | Zbl

[Pir21] Pirnapasov, A. Hutchings’s inequality for the Calabi invariant revisited with an application to pseudo-rotations, 2021 | arXiv

[Sch57] Schwartzman, Sol Asymptotic cycles, Ann. of Math. (2), Volume 66 (1957), pp. 270-284 | MR | DOI

[She15] Shelukhin, Egor ‘Enlacements asymptotiques’ revisited, Ann. Math. Qué., Volume 39 (2015) no. 2, pp. 205-208 | MR | Zbl | DOI

Cité par Sources :