Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 815-836

On s’intéresse à la construction d’hypersurfaces Levi-plates analytiques réelles dans les surfaces K3. On peut en construire dans les tores complexes de dimension 2 en prenant des images d’hyperplans réels. On montre que « presque toute » surface K3 contient une infinité d’hypersurfaces Levi-plates de ce type. La preuve repose principalement sur une construction récente due à Koike-Uehara, ainsi que sur les idées de Verbitsky sur les structures complexes ergodiques et une adaptation d’un argument dû à Ghys dans le cadre de l’étude de la topologie des feuilles génériques.

We investigate the construction of real analytic Levi-flat hypersurfaces in K3 surfaces. By taking images of real hyperplanes, one can construct such hypersurfaces in two-dimensional complex tori. We show that “almost every” K3 surface contains infinitely many Levi-flat hypersurfaces of this type. The proof relies mainly on a recent construction of Koike and Uehara, ideas of Verbitsky on ergodic complex structures, as well as an argument due to Ghys in the context of the study of the topology of generic leaves.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.233
Classification : 14J28, 37A25
Mots-clés : Surfaces K3, hypersurfaces Levi-plates, périodes, théorie ergodique
Keywords: K3 surfaces, Levi-flat hypersurfaces, periods, ergodic theory

Lequen, Félix 1

1 Laboratoire AGM – CY Cergy Paris Université 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__815_0,
     author = {Lequen, F\'elix},
     title = {Presque toute surface {K3} contient une infinit\'e d{\textquoteright}hypersurfaces {Levi-plates} lin\'eaires},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {815--836},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.233},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/jep.233/}
}
TY  - JOUR
AU  - Lequen, Félix
TI  - Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 815
EP  - 836
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.233/
DO  - 10.5802/jep.233
LA  - fr
ID  - JEP_2023__10__815_0
ER  - 
%0 Journal Article
%A Lequen, Félix
%T Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 815-836
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.233/
%R 10.5802/jep.233
%G fr
%F JEP_2023__10__815_0
Lequen, Félix. Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 815-836. doi: 10.5802/jep.233

[1] Adachi, Masanori; Biard, Séverine On Levi flat hypersurfaces with transversely affine foliation, Math. Z., Volume 301 (2022) no. 1, pp. 373-383 | MR | Zbl | DOI

[2] Arnolʼd, V. I. Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves, Funkcional. Anal. i Priložen., Volume 10 (1976) no. 4, pp. 1-12 | MR

[3] Bader, Uri; Gelander, Tsachik Equicontinuous actions of semisimple groups, Groups Geom. Dyn., Volume 11 (2017) no. 3, pp. 1003-1039 | MR | Zbl | DOI

[4] Barrett, David E.; Inaba, Takashi On the topology of compact smooth three-dimensional Levi-flat hypersurfaces, J. Geom. Anal., Volume 2 (1992) no. 6, pp. 489-497 | MR | Zbl | DOI

[5] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 2004 | DOI

[6] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain Kazhdan’s property (T), New Math. Monographs, 11, Cambridge University Press, Cambridge, 2008 | DOI

[7] Borel, Armand; Harish-Chandra Arithmetic subgroups of algebraic groups, Ann. of Math. (2), Volume 75 (1962), pp. 485-535 | MR | Zbl | DOI

[8] Brunella, Marco Courbes entières et feuilletages holomorphes, Enseign. Math. (2), Volume 45 (1999) no. 1-2, pp. 195-216 | Zbl

[9] Canales González, Carolina Levi-flat hypersurfaces and their complement in complex surfaces, Ann. Inst. Fourier (Grenoble), Volume 67 (2017) no. 6, pp. 2323-2462 http://aif.cedram.org/... | Numdam | Zbl | MR

[10] Cerveau, Dominique Minimaux des feuilletages algébriques de (n), Ann. Inst. Fourier (Grenoble), Volume 43 (1993) no. 5, pp. 1535-1543 | MR | Zbl | DOI

[11] Deroin, Bertrand; Dupont, Christophe Topology and dynamics of laminations in surfaces of general type, J. Amer. Math. Soc., Volume 29 (2016) no. 2, pp. 495-535 | MR | Zbl | DOI

[12] Friedman, Robert Global smoothings of varieties with normal crossings, Ann. of Math. (2), Volume 118 (1983) no. 1, pp. 75-114 | MR | Zbl | DOI

[13] Friedman, Robert A new proof of the global Torelli theorem for K3 surfaces, Ann. of Math. (2), Volume 120 (1984) no. 2, pp. 237-269 | MR | Zbl | DOI

[14] Ghys, Étienne Topologie des feuilles génériques, Ann. of Math. (2), Volume 141 (1995) no. 2, pp. 387-422 | Zbl | DOI

[15] Huybrechts, Daniel Lectures on K3 surfaces, Cambridge Studies in Advanced Math., 158, Cambridge University Press, Cambridge, 2016 | DOI

[16] Inaba, Takashi; Mishchenko, Michael A. On real submanifolds of Kähler manifolds foliated by complex submanifolds, Proc. Japan Acad. Ser. A Math. Sci., Volume 70 (1994) no. 1, pp. 1-2 http://projecteuclid.org/euclid.pja/1195511161 | Zbl

[17] Jacobowitz, Howard An introduction to CR structures, Math. Surveys and Monographs, 32, American Mathematical Society, Providence, RI, 1990 | DOI

[18] Koike, Takayuki; Uehara, Takato A gluing construction of projective K3 surfaces, Épijournal de Géom. Alg., Volume 6 (2022), 12, 15 pages | MR | Zbl

[19] Lequen, Félix Inexistence de pavages mesurables invariants par un réseau dans un espace homogène d’un groupe de Lie simple, 2022 | arXiv

[20] Lins Neto, Alcides A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1369-1385 | MR | Zbl | Numdam

[21] Martínez, Matilde; Matsumoto, Shigenori; Verjovsky, Alberto Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund’s theorem, J. Modern Dyn., Volume 10 (2016), pp. 113-134 | MR | Zbl | DOI

[22] Nemirovskii, S Yu Stein domains with Levi-flat boundaries on compact complex surfaces, Math. Notes, Volume 66 (1999) no. 4, pp. 522-525 | MR | Zbl | DOI

[23] Ohsawa, Takeo A Levi-flat in a Kummer surface whose complement is strongly pseudoconvex, Osaka J. Math., Volume 43 (2006) no. 4, pp. 747-750 http://projecteuclid.org/euclid.ojm/1165850033 | MR | Zbl

[24] Ohsawa, Takeo A survey on Levi flat hypersurfaces, Complex geometry and dynamics (Abel Symp.), Volume 10, Springer, Cham, 2015, pp. 211-225 | DOI | MR | Zbl

[25] Siegel, Carl Ludwig Iteration of analytic functions, Ann. of Math. (2), Volume 43 (1942), pp. 607-612 | MR | Zbl | DOI

[26] Todorov, Andrei N. Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math., Volume 61 (1980) no. 3, pp. 251-265 | MR | Zbl | DOI

[27] Verbitsky, Misha Ergodic complex structures on hyperkähler manifolds, Acta Math., Volume 215 (2015) no. 1, pp. 161-182 | Zbl | DOI

[28] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Math., 81, Birkhäuser Verlag, Basel, 1984 | DOI

Cité par Sources :