[Sur le taux de convergence dans dans la limite de l’équation de Hartree à l’équation de Vlasov-Poisson]
Using a new stability estimate for the difference of the square roots of two solutions of the Vlasov–Poisson equation, we obtain the convergence in the norm of the Wigner transform of a solution of the Hartree equation with Coulomb potential to a solution of the Vlasov–Poisson equation, with a rate of convergence proportional to . This improves the rate of convergence in obtained in [L. Lafleche, C. Saffirio: Analysis & PDE, to appear]. Another reason of interest of this paper is the new method, reminiscent of the ones used to prove the mean-field limit from the many-body Schrödinger equation towards the Hartree–Fock equation for mixed states.
Grâce à une nouvelle estimée de stabilité pour la différence entre les racines carrées de deux solutions de l’équation de Vlasov-Poisson, nous obtenons la convergence en norme de la transformée de Wigner d’une solution de l’équation de Hartree avec potentiel de Coulomb vers une solution de l’équation de Vlasov-Poisson, avec un taux de convergence proportionnel à la constante de Planck . Ceci améliore le taux de convergence dans obtenu dans [L. Lafleche, C. Saffirio : Analysis & PDE, à paraître]. Un autre intérêt de cet article est la nouvelle méthode, réminiscente de celles utilisées pour prouver la limite de champ moyen de l’équation de Schrödinger à corps vers l’équation de Hartree-Fock pour des états mixtes.
Accepté le :
Publié le :
Keywords: Semiclassical limit, Hartree equation, Vlasov equation, Coulomb potential, gravitational potential.
Mots-clés : Limite semi-classique, équation de Hartree, équation de Vlasov, potentiel de Coulomb, potentiel gravitationnel
Chong, Jacky J. 1 ; Lafleche, Laurent 2 ; Saffirio, Chiara 3
CC-BY 4.0
@article{JEP_2023__10__703_0,
author = {Chong, Jacky J. and Lafleche, Laurent and Saffirio, Chiara},
title = {On the $L^2$ rate of convergence in the limit from the {Hartree} to the {Vlasov{\textendash}Poisson} equation},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {703--726},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.230},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.230/}
}
TY - JOUR AU - Chong, Jacky J. AU - Lafleche, Laurent AU - Saffirio, Chiara TI - On the $L^2$ rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 703 EP - 726 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.230/ DO - 10.5802/jep.230 LA - en ID - JEP_2023__10__703_0 ER -
%0 Journal Article %A Chong, Jacky J. %A Lafleche, Laurent %A Saffirio, Chiara %T On the $L^2$ rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 703-726 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.230/ %R 10.5802/jep.230 %G en %F JEP_2023__10__703_0
Chong, Jacky J.; Lafleche, Laurent; Saffirio, Chiara. On the $L^2$ rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 703-726. doi: 10.5802/jep.230
[1] The semiclassical limit of the time dependent Hartree-Fock equation: the Weyl symbol of the solution, Anal. PDE, Volume 6 (2013) no. 7, pp. 1649-1674 | MR | Zbl | DOI
[2] Strong semiclassical approximation of Wigner functions for the Hartree dynamics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 22 (2011) no. 4, pp. 525-552 | DOI | MR | Zbl
[3] From the Hartree dynamics to the Vlasov equation, Arch. Rational Mech. Anal., Volume 221 (2016) no. 1, pp. 273-334 | DOI | MR | Zbl
[4] Mean-field regime for fermionic systems, Effective evolution equations from quantum dynamics, Springer, Cham, 2016, pp. 57-78 | DOI
[5] Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer, Berlin, Heidelberg, 1976 | DOI
[6] - solutions to the Schrödinger-Poisson system: existence, uniqueness, time behaviour, and smoothing effects, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 8, pp. 1051-1083 | DOI | Zbl
[7] Combined mean-field and semiclassical limits of large fermionic systems, J. Statist. Phys., Volume 182 (2021) no. 2, p. 24 | DOI | MR | Zbl
[8] From many-body quantum dynamics to the Hartree-Fock and Vlasov equations with singular potentials, 2021 | arXiv
[9] Global-in-time semiclassical regularity for the Hartree-Fock equation, J. Math. Phys., Volume 63 (2022) no. 8, 081904, 9 pages | DOI | MR | Zbl
[10] Semiclassical limit for mixed states with singular and rough potentials, Indiana Univ. Math. J., Volume 61 (2012) no. 1, pp. 193-222 | MR | Zbl | DOI
[11] The Schrödinger equation in the mean-field and semiclassical regime, Arch. Rational Mech. Anal., Volume 223 (2017) no. 1, pp. 57-94 | Zbl | DOI
[12] Mean-field and classical limit for the -body quantum dynamics with Coulomb interaction, Comm. Pure Appl. Math. (2021), pp. 1-35 | DOI
[13] Mean-field approximation of quantum systems and classical limit, Math. Models Methods Appl. Sci., Volume 13 (2003) no. 1, pp. 59-73 | MR | DOI
[14] On spaces, Enseign. Math., Volume 12 (1966), pp. 249-276 | MR | Zbl | DOI
[15] Propagation of moments and semiclassical limit from Hartree to Vlasov equation, J. Statist. Phys., Volume 177 (2019) no. 1, pp. 20-60 | MR | Zbl | DOI
[16] Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 38 (2021) no. 6, pp. 1739-1762 | MR | Zbl | DOI
[17] Strong semiclassical limit from Hartree and Hartree-Fock to Vlasov-Poisson equation, Anal. PDE (2021) (to appear)
[18] On the Fefferman-Phong inequality and a Wiener-type algebra of pseudodifferential operators, Publ. RIMS, Kyoto Univ., Volume 43 (2007) no. 2, pp. 329-371 | MR | Zbl | DOI
[19] The Hartree and Vlasov equations at positive density, Comm. Partial Differential Equations, Volume 45 (2020) no. 12, pp. 1702-1754 | MR | Zbl | DOI
[20] Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993) no. 3, pp. 553-618 | DOI | MR | Zbl
[21] Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR
[22] The classical limit of a self-consistent quantum Vlasov equation, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 1, pp. 109-124 | DOI | MR | Zbl
[23] Vlasov hydrodynamics of a quantum mechanical model, Comm. Math. Phys., Volume 79 (1981) no. 1, pp. 9-24 | DOI | MR
[24] Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, Volume 95 (1992) no. 2, pp. 281-303 | DOI | MR | Zbl
[25] Free states of the canonical anticommutation relations, Comm. Math. Phys., Volume 16 (1970) no. 1, pp. 1-33 | DOI | MR | Zbl
[26] Semiclassical limit to the Vlasov equation with inverse power law potentials, Comm. Math. Phys., Volume 373 (2019) no. 2, pp. 571-619 | DOI | MR | Zbl
[27] From the Hartree equation to the Vlasov-Poisson system: strong convergence for a class of mixed states, SIAM J. Math. Anal., Volume 52 (2020) no. 6, pp. 5533-5553 | DOI | MR | Zbl
[28] On the Vlasov hierarchy, Math. Methods Appl. Sci., Volume 3 (1981) no. 1, pp. 445-455 | DOI | MR | Zbl
Cité par Sources :





