The space of finite-energy metrics over a degeneration of complex manifolds
[L’espace des métriques d’énergie finie sur une dégénérescence de variétés complexes]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 659-701

Given a degeneration of projective complex manifolds X𝔻 * with meromorphic singularities, and a relatively ample line bundle L on X, we study spaces of plurisubharmonic metrics on L, with particular focus on (relative) finite-energy conditions. We endow the space ^ 1 (L) of relatively maximal, relative finite-energy metrics with a d 1 -type distance given by the Lelong number at zero of the collection of fiberwise Darvas d 1 -distances. We show that this metric structure is complete and geodesic. Seeing X and L as schemes X K , L K over the discretely-valued field K=((t)) of complex Laurent series, we show that the space 1 (L K an ) of non-Archimedean finite-energy metrics over L K an embeds isometrically and geodesically into ^ 1 (L), and characterize its image. This generalizes previous work of Berman-Boucksom-Jonsson, treating the trivially-valued case.

Étant donné une dégénérescence de variétés projectives complexes X𝔻 * avec des singularités méromorphes, et un fibré en droites relativement ample L sur X, nous étudions des espaces de métriques plurisousharmoniques sur L, avec une attention particulière aux conditions (relatives) d’énergie finie. Nous munissons l’espace ^ 1 (L) des métriques relativement maximales d’énergie finie d’une distance de type d 1 donnée par le nombre de Lelong en 0 de la famille des distances de Darvas d 1 fibre à fibre. Nous montrons que cette structure métrique est complète et géodésique. En considérant X et L comme des schémas X K , L K sur le champ discrètement valué K=((t)) des séries de Laurent complexes, nous montrons que l’espace 1 (L K an ) des métriques non archimédiennes d’énergie finie sur L K an s’immerge isométriquement et géodésiquement dans ^ 1 (L), et nous caractérisons son image. Ceci généralise un travail précédent de Berman-Boucksom-Jonsson, traitant le cas trivialement valué.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.229
Classification : 32U05, 32Q15, 14E99
Keywords: Berkovich spaces, complex manifolds, pluripotential theory, degenerations
Mots-clés : Espaces de Berkovich, variétés complexes, théorie du pluripotentiel, dégénérescences

Reboulet, Rémi 1

1 Department of mathematical sciences, Chalmers University of Technology 412 96 Gothenburg, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__659_0,
     author = {Reboulet, R\'emi},
     title = {The space of finite-energy metrics over a degeneration of complex manifolds},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {659--701},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.229},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.229/}
}
TY  - JOUR
AU  - Reboulet, Rémi
TI  - The space of finite-energy metrics over a degeneration of complex manifolds
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 659
EP  - 701
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.229/
DO  - 10.5802/jep.229
LA  - en
ID  - JEP_2023__10__659_0
ER  - 
%0 Journal Article
%A Reboulet, Rémi
%T The space of finite-energy metrics over a degeneration of complex manifolds
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 659-701
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.229/
%R 10.5802/jep.229
%G en
%F JEP_2023__10__659_0
Reboulet, Rémi. The space of finite-energy metrics over a degeneration of complex manifolds. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 659-701. doi: 10.5802/jep.229

[BBGZ13] Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci., Volume 117 (2013), pp. 179-245 | DOI | Zbl | Numdam

[BBJ21] Berman, Robert J.; Boucksom, Sébastien; Jonsson, Mattias A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc., Volume 34 (3) (2021), pp. 605-652 | Zbl | MR | DOI

[BDL17] Berman, Robert J.; Darvas, Tamás; Lu, Chinh H. Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol., Volume 21 (2017) no. 5, pp. 2945-2988 | DOI | Zbl | MR

[BE21] Boucksom, Sébastien; Eriksson, Dennis Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 124 pages | DOI | Zbl | MR

[Ber90] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, RI, 1990 | DOI | MR

[Ber09] Berkovich, Vladimir G. A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progr. Math.), Volume 269, Birkhäuser Boston, Boston, MA, 2009, pp. 49-67 | Zbl | MR | DOI

[BFJ08] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Valuations and plurisubharmonic singularities, Publ. RIMS, Kyoto Univ., Volume 44 (2008) no. 2, pp. 449-494 | Zbl | MR | DOI

[BFJ16] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom., Volume 25 (2016) no. 1, pp. 77-139 | Zbl | MR | DOI

[BHJ19] Boucksom, Sébastien; Hisamoto, Tomoyuki; Jonsson, Mattias Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 9, pp. 2905-2944 Erratum: Ibid. 24 (2022), no. 2, p. 735–736 | Zbl | DOI

[BJ17] Boucksom, Sébastien; Jonsson, Mattias Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. polytech. Math., Volume 4 (2017), pp. 87-139 | Zbl | Numdam | MR | DOI

[BJ22] Boucksom, Sébastien; Jonsson, Mattias Global pluripotential theory over a trivially valued field, Ann. Fac. Sci. Toulouse Math. (6), Volume 31 (2022) no. 3, pp. 647-836 | MR | DOI

[BK07] Błocki, Zbigniew; Kołodziej, Sławomir On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., Volume 135 (2007) no. 7, pp. 2089-2093 | Zbl | MR | DOI

[Bou18a] Boucksom, Sébastien Singularities of plurisubharmonic functions and multiplier ideals (2018) (Online lecture notes, http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf)

[Bou18b] Boucksom, Sébastien Variational and non-archimedean aspects of the Yau-Tian-Donaldson conjecture, Proceedings ICM—Rio de Janeiro 2018. Vol. II, World Sci. Publ., Hackensack, NJ, 2018, pp. 591-617 | Zbl

[BT76] Bedford, Eric; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI

[CGPT23] Cao, Junyan; Guenancia, Henri; Paun, Mihai; Tosatti, Valentino Variation of singular Kähler–Einstein metrics: Kodaira dimension zero, J. Eur. Math. Soc. (JEMS), Volume 25 (2023) no. 2, pp. 633-679 | Zbl | DOI

[CLD12] Chambert-Loir, Antoine; Ducros, Antoine Formes différentielles réelles et courants sur les espaces de Berkovich, 2012 | arXiv

[Dar15] Darvas, Tamás The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | Zbl | MR | DOI

[Dar19] Darvas, Tamás Geometric pluripotential theory on Kähler manifolds, 2019 | arXiv

[Del87] Deligne, P. Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, American Mathematical Society, Providence, RI, 1987, pp. 93-177 | Zbl | DOI

[DEL00] Demailly, Jean-Pierre; Ein, Lawrence; Lazarsfeld, Robert A subadditivity property of multiplier ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | Zbl | MR | DOI

[Dem92] Demailly, Jean-Pierre Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409 | Zbl | MR

[Dem12] Demailly, Jean-Pierre Analytic methods in algebraic geometry, Surveys of Modern Math., 1, International Press & Higher Education Press, Somerville, MA & Beijing, 2012

[DL20] Darvas, Tamás; Lu, Chinh H. Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol., Volume 24 (2020) no. 4, pp. 1907-1967 | MR | Zbl | DOI

[Don02] Donaldson, S. K. Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom., Volume 1 (2002) no. 2, pp. 171-196 | Zbl | DOI

[Don12] Donaldson, S. K. Stability, birational transformations and the Kähler-Einstein problem, Surveys in differential geometry. Vol. XVII (Surv. Differ. Geom.), Volume 17, Int. Press, Boston, MA, 2012, pp. 203-228 | DOI | Zbl

[Elk89] Elkik, R. Fibrés d’intersections et intégrales de classes de Chern, Ann. Sci. École Norm. Sup. (4), Volume 22 (1989) no. 2, pp. 195-226 | Zbl | MR | Numdam | DOI

[Elk90] Elkik, R. Métriques sur les fibrés d’intersection, Duke Math. J., Volume 61 (1990) no. 1, pp. 303-328 | DOI | Zbl | MR

[Fav20] Favre, Charles Degeneration of endomorphisms of the complex projective space in the hybrid space, J. Inst. Math. Jussieu, Volume 19 (2020) no. 4, pp. 1141-1183 | DOI | MR | Zbl

[Gub07] Gubler, Walter Tropical varieties for non-Archimedean analytic spaces, Invent. Math., Volume 169 (2007) no. 2, pp. 321-376 | DOI | MR | Zbl

[GZ12] Guedj, Vincent; Zeriahi, Ahmed Dirichlet problem in domains of n , Complex Monge-Ampère equations and geodesics in the space of Kähler metrics (Lect. Notes in Math.), Volume 2038, Springer, Heidelberg, 2012, pp. 13-32 | Zbl | DOI

[Kli91] Klimek, Maciej Pluripotential theory, London Math. Society Monographs, 6, The Clarendon Press, Oxford University Press, New York, 1991

[Lag12] Lagerberg, Aron Super currents and tropical geometry, Math. Z., Volume 270 (2012) no. 3-4, pp. 1011-1050 | Zbl | MR | DOI

[Li22] Li, Chi Geodesic rays and stability in the cscK problem, Ann. Sci. École Norm. Sup. (4), Volume 55 (2022) no. 6, pp. 1529-1574 | Zbl | MR

[MM07] Ma, Xiaonan; Marinescu, George Holomorphic Morse inequalities and Bergman kernels, Progress in Math., 254, Birkhäuser Verlag, Basel, 2007 | DOI

[Mor99] Moriwaki, Atsushi The continuity of Deligne’s pairing, Internat. Math. Res. Notices (1999) no. 19, pp. 1057-1066 | Zbl | MR | DOI

[PRS08] Phong, D. H.; Ross, Julius; Sturm, Jacob Deligne pairings and the Knudsen-Mumford expansion, J. Differential Geom., Volume 78 (2008) no. 3, pp. 475-496 http://projecteuclid.org/euclid.jdg/1207834553 | Zbl | MR

[PS10] Phong, D. H.; Sturm, Jacob The Dirichlet problem for degenerate complex Monge-Ampere equations, Comm. Anal. Geom., Volume 18 (2010) no. 1, pp. 145-170 | Zbl | MR | DOI

[PS22] Pille-Schneider, Léonard Hybrid convergence of Kähler-Einstein measures, Ann. Inst. Fourier (Grenoble), Volume 72 (2022) no. 2, pp. 587-615 | Zbl | DOI

[Reb22] Reboulet, Rémi Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy, J. reine angew. Math., Volume 793 (2022), pp. 59-103 | Zbl | MR | DOI

[RN15] Ross, Julius; Nyström, David Witt Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation, Publ. Math. Inst. Hautes Études Sci., Volume 122 (2015), pp. 315-335 | Zbl | DOI

[Sch12] Schumacher, Georg Positivity of relative canonical bundles and applications, Invent. Math., Volume 190 (2012) no. 1, pp. 1-56 Erratum: Ibid. 192 (2013), no. 1, p. 253–255 | Zbl | MR | DOI

[Tsu10] Tsuji, Hajime Dynamical construction of Kähler-Einstein metrics, Nagoya Math. J., Volume 199 (2010), pp. 107-122 | MR | Zbl | DOI

[Xia19] Xia, Mingchen Mabuchi geometry of big cohomology classes with prescribed singularities, 2019 | arXiv

[YZ21] Yuan, Xinyi; Zhang, Shou-Wu Adelic line bundles over quasi-projective varieties, 2021 | arXiv

Cité par Sources :