[L’espace des métriques d’énergie finie sur une dégénérescence de variétés complexes]
Given a degeneration of projective complex manifolds with meromorphic singularities, and a relatively ample line bundle on , we study spaces of plurisubharmonic metrics on , with particular focus on (relative) finite-energy conditions. We endow the space of relatively maximal, relative finite-energy metrics with a -type distance given by the Lelong number at zero of the collection of fiberwise Darvas -distances. We show that this metric structure is complete and geodesic. Seeing and as schemes , over the discretely-valued field of complex Laurent series, we show that the space of non-Archimedean finite-energy metrics over embeds isometrically and geodesically into , and characterize its image. This generalizes previous work of Berman-Boucksom-Jonsson, treating the trivially-valued case.
Étant donné une dégénérescence de variétés projectives complexes avec des singularités méromorphes, et un fibré en droites relativement ample sur , nous étudions des espaces de métriques plurisousharmoniques sur , avec une attention particulière aux conditions (relatives) d’énergie finie. Nous munissons l’espace des métriques relativement maximales d’énergie finie d’une distance de type donnée par le nombre de Lelong en de la famille des distances de Darvas fibre à fibre. Nous montrons que cette structure métrique est complète et géodésique. En considérant et comme des schémas , sur le champ discrètement valué des séries de Laurent complexes, nous montrons que l’espace des métriques non archimédiennes d’énergie finie sur s’immerge isométriquement et géodésiquement dans , et nous caractérisons son image. Ceci généralise un travail précédent de Berman-Boucksom-Jonsson, traitant le cas trivialement valué.
Accepté le :
Publié le :
Keywords: Berkovich spaces, complex manifolds, pluripotential theory, degenerations
Mots-clés : Espaces de Berkovich, variétés complexes, théorie du pluripotentiel, dégénérescences
Reboulet, Rémi 1
CC-BY 4.0
@article{JEP_2023__10__659_0,
author = {Reboulet, R\'emi},
title = {The space of finite-energy metrics over a degeneration of complex manifolds},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {659--701},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.229},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.229/}
}
TY - JOUR AU - Reboulet, Rémi TI - The space of finite-energy metrics over a degeneration of complex manifolds JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 659 EP - 701 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.229/ DO - 10.5802/jep.229 LA - en ID - JEP_2023__10__659_0 ER -
%0 Journal Article %A Reboulet, Rémi %T The space of finite-energy metrics over a degeneration of complex manifolds %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 659-701 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.229/ %R 10.5802/jep.229 %G en %F JEP_2023__10__659_0
Reboulet, Rémi. The space of finite-energy metrics over a degeneration of complex manifolds. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 659-701. doi: 10.5802/jep.229
[BBGZ13] A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci., Volume 117 (2013), pp. 179-245 | DOI | Zbl | Numdam
[BBJ21] A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc., Volume 34 (3) (2021), pp. 605-652 | Zbl | MR | DOI
[BDL17] Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol., Volume 21 (2017) no. 5, pp. 2945-2988 | DOI | Zbl | MR
[BE21] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 124 pages | DOI | Zbl | MR
[Ber90] Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, RI, 1990 | DOI | MR
[Ber09] A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progr. Math.), Volume 269, Birkhäuser Boston, Boston, MA, 2009, pp. 49-67 | Zbl | MR | DOI
[BFJ08] Valuations and plurisubharmonic singularities, Publ. RIMS, Kyoto Univ., Volume 44 (2008) no. 2, pp. 449-494 | Zbl | MR | DOI
[BFJ16] Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom., Volume 25 (2016) no. 1, pp. 77-139 | Zbl | MR | DOI
[BHJ19] Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 9, pp. 2905-2944 Erratum: Ibid. 24 (2022), no. 2, p. 735–736 | Zbl | DOI
[BJ17] Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. polytech. Math., Volume 4 (2017), pp. 87-139 | Zbl | Numdam | MR | DOI
[BJ22] Global pluripotential theory over a trivially valued field, Ann. Fac. Sci. Toulouse Math. (6), Volume 31 (2022) no. 3, pp. 647-836 | MR | DOI
[BK07] On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., Volume 135 (2007) no. 7, pp. 2089-2093 | Zbl | MR | DOI
[Bou18a] Singularities of plurisubharmonic functions and multiplier ideals (2018) (Online lecture notes, http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf)
[Bou18b] Variational and non-archimedean aspects of the Yau-Tian-Donaldson conjecture, Proceedings ICM—Rio de Janeiro 2018. Vol. II, World Sci. Publ., Hackensack, NJ, 2018, pp. 591-617 | Zbl
[BT76] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI
[CGPT23] Variation of singular Kähler–Einstein metrics: Kodaira dimension zero, J. Eur. Math. Soc. (JEMS), Volume 25 (2023) no. 2, pp. 633-679 | Zbl | DOI
[CLD12] Formes différentielles réelles et courants sur les espaces de Berkovich, 2012 | arXiv
[Dar15] The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | Zbl | MR | DOI
[Dar19] Geometric pluripotential theory on Kähler manifolds, 2019 | arXiv
[Del87] Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, American Mathematical Society, Providence, RI, 1987, pp. 93-177 | Zbl | DOI
[DEL00] A subadditivity property of multiplier ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | Zbl | MR | DOI
[Dem92] Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409 | Zbl | MR
[Dem12] Analytic methods in algebraic geometry, Surveys of Modern Math., 1, International Press & Higher Education Press, Somerville, MA & Beijing, 2012
[DL20] Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol., Volume 24 (2020) no. 4, pp. 1907-1967 | MR | Zbl | DOI
[Don02] Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom., Volume 1 (2002) no. 2, pp. 171-196 | Zbl | DOI
[Don12] Stability, birational transformations and the Kähler-Einstein problem, Surveys in differential geometry. Vol. XVII (Surv. Differ. Geom.), Volume 17, Int. Press, Boston, MA, 2012, pp. 203-228 | DOI | Zbl
[Elk89] Fibrés d’intersections et intégrales de classes de Chern, Ann. Sci. École Norm. Sup. (4), Volume 22 (1989) no. 2, pp. 195-226 | Zbl | MR | Numdam | DOI
[Elk90] Métriques sur les fibrés d’intersection, Duke Math. J., Volume 61 (1990) no. 1, pp. 303-328 | DOI | Zbl | MR
[Fav20] Degeneration of endomorphisms of the complex projective space in the hybrid space, J. Inst. Math. Jussieu, Volume 19 (2020) no. 4, pp. 1141-1183 | DOI | MR | Zbl
[Gub07] Tropical varieties for non-Archimedean analytic spaces, Invent. Math., Volume 169 (2007) no. 2, pp. 321-376 | DOI | MR | Zbl
[GZ12] Dirichlet problem in domains of , Complex Monge-Ampère equations and geodesics in the space of Kähler metrics (Lect. Notes in Math.), Volume 2038, Springer, Heidelberg, 2012, pp. 13-32 | Zbl | DOI
[Kli91] Pluripotential theory, London Math. Society Monographs, 6, The Clarendon Press, Oxford University Press, New York, 1991
[Lag12] Super currents and tropical geometry, Math. Z., Volume 270 (2012) no. 3-4, pp. 1011-1050 | Zbl | MR | DOI
[Li22] Geodesic rays and stability in the cscK problem, Ann. Sci. École Norm. Sup. (4), Volume 55 (2022) no. 6, pp. 1529-1574 | Zbl | MR
[MM07] Holomorphic Morse inequalities and Bergman kernels, Progress in Math., 254, Birkhäuser Verlag, Basel, 2007 | DOI
[Mor99] The continuity of Deligne’s pairing, Internat. Math. Res. Notices (1999) no. 19, pp. 1057-1066 | Zbl | MR | DOI
[PRS08] Deligne pairings and the Knudsen-Mumford expansion, J. Differential Geom., Volume 78 (2008) no. 3, pp. 475-496 http://projecteuclid.org/euclid.jdg/1207834553 | Zbl | MR
[PS10] The Dirichlet problem for degenerate complex Monge-Ampere equations, Comm. Anal. Geom., Volume 18 (2010) no. 1, pp. 145-170 | Zbl | MR | DOI
[PS22] Hybrid convergence of Kähler-Einstein measures, Ann. Inst. Fourier (Grenoble), Volume 72 (2022) no. 2, pp. 587-615 | Zbl | DOI
[Reb22] Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy, J. reine angew. Math., Volume 793 (2022), pp. 59-103 | Zbl | MR | DOI
[RN15] Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation, Publ. Math. Inst. Hautes Études Sci., Volume 122 (2015), pp. 315-335 | Zbl | DOI
[Sch12] Positivity of relative canonical bundles and applications, Invent. Math., Volume 190 (2012) no. 1, pp. 1-56 Erratum: Ibid. 192 (2013), no. 1, p. 253–255 | Zbl | MR | DOI
[Tsu10] Dynamical construction of Kähler-Einstein metrics, Nagoya Math. J., Volume 199 (2010), pp. 107-122 | MR | Zbl | DOI
[Xia19] Mabuchi geometry of big cohomology classes with prescribed singularities, 2019 | arXiv
[YZ21] Adelic line bundles over quasi-projective varieties, 2021 | arXiv
Cité par Sources :





