[Théorie du pluripotentiel global sur les espaces hybrides]
Let be a polarized scheme over a Banach ring . We define and study a class of plurisubharmonic metrics on the Berkovich analytification . We focus mainly on the case where is a hybrid ring of power series, so that is the hybrid space associated to a degeneration of complex manifolds . We then prove that any plurisubharmonic metric on with logarithmic growth at zero admits a canonical plurisubharmonic extension to the hybrid space . We also discuss the continuity of the family of Monge-Ampère measures associated to a continuous plurisubharmonic hybrid metric.
Soit un schéma polarisé sur un anneau de Banach . Nous définissons et étudions la classe des métriques plurisousharmoniques sur l’analytifié de Berkovich . Nous nous intéressons en particulier au cas où est l’anneau hybride des séries convergentes, et est l’espace hybride associé à une dégénérescence de variétés complexes . Nous démontrons alors que toute métrique plurisousharmonique sur à croissance logarithmique en zéro admet une extension plurisousharmonique canonique à l’espace hybride . Nous discutons aussi de la continuité de la famille de mesures de Monge-Ampère associée à une métrique hybride plurisousharmonique continue.
Accepté le :
Publié le :
Keywords: Berkovich spaces, pluripotential theory, hybrid spaces
Mots-clés : Espaces de Berkovich, théorie du pluripotentiel, espaces hybrides
Pille-Schneider, Léonard 1
CC-BY 4.0
@article{JEP_2023__10__601_0,
author = {Pille-Schneider, L\'eonard},
title = {Global pluripotential theory on hybrid spaces},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {601--658},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.228},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.228/}
}
TY - JOUR AU - Pille-Schneider, Léonard TI - Global pluripotential theory on hybrid spaces JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 601 EP - 658 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.228/ DO - 10.5802/jep.228 LA - en ID - JEP_2023__10__601_0 ER -
Pille-Schneider, Léonard. Global pluripotential theory on hybrid spaces. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 601-658. doi: 10.5802/jep.228
[AK00] Weak semistable reduction in characteristic 0, Invent. Math., Volume 139 (2000) no. 2, pp. 241-273 | Zbl | MR | DOI
[ALT18] Semistable reduction in characteristic 0, 2018 | arXiv
[Aub78] Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2), Volume 102 (1978) no. 1, pp. 63-95 | Zbl
[BBJ21] A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc., Volume 34 (3) (2021), pp. 605-652 | Zbl | MR | DOI
[BCHM10] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | Zbl | MR | DOI
[BE21] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 124 pages | Zbl | MR | DOI
[BEGZ10] Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | Zbl | DOI
[Ber90] Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, RI, 1990 | MR | DOI
[Ber99] Smooth -adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | Zbl | MR | DOI
[Ber09] A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progr. Math.), Volume 269, Birkhäuser Boston, Boston, MA, 2009, pp. 49-67 | Zbl | MR | DOI
[BFJ08] Valuations and plurisubharmonic singularities, Publ. RIMS, Kyoto Univ., Volume 44 (2008) no. 2, pp. 449-494 | Zbl | MR | DOI
[BFJ15] Solution to a non-Archimedean Monge-Ampère equation, J. Amer. Math. Soc., Volume 28 (2015) no. 3, pp. 617-667 | Zbl | DOI
[BFJ16] Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom., Volume 25 (2016) no. 1, pp. 77-139 | Zbl | MR | DOI
[BG14] Kähler-Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1683-1730 | Zbl | DOI
[BGGJ + 20] Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations, Algebraic Geom., Volume 7 (2020) no. 2, pp. 113-152 | Zbl | DOI
[BGPS14] Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, 360, Société Mathématique de France, Paris, 2014 | Numdam
[BJ17] Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. polytech. Math., Volume 4 (2017), pp. 87-139 | Zbl | Numdam | MR | DOI
[BJ18] Singular semipositive metrics on line bundles on varieties over trivially valued fields, 2018 | arXiv
[BJ22] Global pluripotential theory over a trivially valued field, Ann. Fac. Sci. Toulouse Math. (6), Volume 31 (2022) no. 3, pp. 647-836 | MR | DOI
[BT76] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | Zbl | DOI
[CL06] Mesures et équidistribution sur les espaces de Berkovich, J. reine angew. Math., Volume 595 (2006), pp. 215-235 | Zbl | DOI
[CLD12] Formes différentielles réelles et courants sur les espaces de Berkovich, 2012 | arXiv
[Dar15] The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | Zbl | MR | DOI
[DEL00] A subadditivity property of multiplier ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | Zbl | MR | DOI
[Dem92] Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409 | Zbl | MR
[Dem12] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012
[Dem16] Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I (Adv. Lect. Math. (ALM)), Volume 35, Int. Press, Somerville, MA, 2016, pp. 191-222 | Zbl | MR
[DPS01] Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | Zbl | DOI
[EGZ09] Singular Kähler-Einstein metrics, J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 607-639 | Zbl | DOI
[Fav20] Degeneration of endomorphisms of the complex projective space in the hybrid space, J. Inst. Math. Jussieu, Volume 19 (2020) no. 4, pp. 1141-1183 | Zbl | MR | DOI
[GO22] Special Lagrangian fibrations, Berkovich retraction, and crystallographic groups, 2022 | arXiv
[Gub98] Local heights of subvarieties over non-Archimedean fields, J. reine angew. Math., Volume 498 (1998), pp. 61-113 | Zbl | MR | DOI
[GZ05] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | Zbl | DOI
[GZ17] Degenerate complex Monge-Ampère equations, EMS Tracts in Math., 26, European Mathematical Society (EMS), Zürich, 2017 | DOI
[KKMSD73] Toroidal embeddings. I, Lect. Notes in Math., 339, Springer-Verlag, Berlin-New York, 1973 | DOI
[Kli91] Pluripotential theory, London Math. Society Monographs, 6, The Clarendon Press, Oxford University Press, New York, 1991
[KNX18] Semi-stable extensions over 1-dimensional bases, Acta Mech. Sinica (English Ed.), Volume 34 (2018) no. 1, pp. 103-113 | Zbl | MR | DOI
[Kol13] Singularities of the minimal model program, Cambridge Tracts in Math., 200, Cambridge University Press, Cambridge, 2013 | DOI
[Koł98] The complex Monge-Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | Zbl | DOI
[KS06] Affine structures and non-Archimedean analytic spaces, The unity of mathematics (Progress in Math.), Volume 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321-385 | Zbl | MR | DOI
[Li22] Strominger-Yau-Zaslow conjecture for Calabi-Yau hypersurfaces in the Fermat family, Acta Math., Volume 229 (2022) no. 1, pp. 1-53 | Zbl | MR
[Liu11] A non-Archimedean analogue of the Calabi-Yau theorem for totally degenerate abelian varieties, J. Differential Geom., Volume 89 (2011) no. 1, pp. 87-110 http://projecteuclid.org/euclid.jdg/1324476752 | Zbl | MR
[LP20] Espaces de Berkovich sur : catégorie, topologie, cohomologie, 2020 | arXiv
[MN15] Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton, Algebraic Geom., Volume 2 (2015) no. 3, pp. 365-404 | DOI | Zbl | MR
[Nad90] Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2), Volume 132 (1990) no. 3, pp. 549-596 | DOI | Zbl | MR
[Poi10] La droite de Berkovich sur , Astérisque, 334, Société Mathématique de France, Paris, 2010 | Numdam
[Poi13] Les espaces de Berkovich sont angéliques, Bull. Soc. math. France, Volume 141 (2013) no. 2, pp. 267-297 | DOI | Zbl | Numdam
[Poi22] Dynamique analytique sur . I : Mesures d’équilibre sur une droite projective relative, 2022 | arXiv
[PS22a] Hybrid convergence of Kähler-Einstein measures, Ann. Inst. Fourier (Grenoble), Volume 72 (2022) no. 2, pp. 587-615 | DOI | Zbl
[PS22b] Hybrid toric varieties and the non-Archimedean SYZ fibration on Calabi-Yau hypersurfaces, 2022 | arXiv
[Reb23] The space of finite-energy metrics over a degeneration of complex manifolds, J. Éc. polytech. Math., Volume 10 (2023), pp. 659-701 | DOI
[Sch12] Positivity of relative canonical bundles and applications, Invent. Math., Volume 190 (2012) no. 1, pp. 1-56 Erratum: Ibid. 192 (2013), no. 1, p. 253–255 | DOI | Zbl | MR
[Shi20a] Convergence of Bergman measures towards the Zhang measure, 2020 | arXiv
[Shi20b] Convergence of Narasimhan-Simha measures on degenerating families of Riemann surfaces, 2020 | arXiv
[Son17] Degeneration of Kähler-Einstein manifolds of negative scalar curvature, 2017 | arXiv
[SSW20] Riemannian geometry of Kähler-Einstein currents III: compactness of Kähler-Einstein manifolds of negative scalar curvature, 2020 | arXiv
[Thu05] Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, Ph. D. Thesis, Université Rennes 1 (2005) (https://theses.hal.science/tel-00010990)
[Thu07] Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math., Volume 123 (2007) no. 4, pp. 381-451 | DOI | Zbl | MR
[Yau78] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | Zbl
[Zha95] Small points and adelic metrics, J. Algebraic Geom., Volume 4 (1995) no. 2, pp. 281-300 | Zbl | MR
[Zha15] Collapsing of negative Kähler-Einstein metrics, Math. Res. Lett., Volume 22 (2015) no. 6, pp. 1843-1869 | DOI | Zbl | MR
Cité par Sources :





