Global pluripotential theory on hybrid spaces
[Théorie du pluripotentiel global sur les espaces hybrides]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 601-658

Let (X,L) be a polarized scheme over a Banach ring A. We define and study a class PSH(X,L) of plurisubharmonic metrics on the Berkovich analytification X an . We focus mainly on the case where A is a hybrid ring of power series, so that X an is the hybrid space associated to a degeneration of complex manifolds X. We then prove that any plurisubharmonic metric on (X,L) with logarithmic growth at zero admits a canonical plurisubharmonic extension to the hybrid space X hyb . We also discuss the continuity of the family of Monge-Ampère measures associated to a continuous plurisubharmonic hybrid metric.

Soit (X,L) un schéma polarisé sur un anneau de Banach A. Nous définissons et étudions la classe des métriques plurisousharmoniques PSH(X,L) sur l’analytifié de Berkovich X an . Nous nous intéressons en particulier au cas où A est l’anneau hybride des séries convergentes, et X an est l’espace hybride associé à une dégénérescence de variétés complexes X. Nous démontrons alors que toute métrique plurisousharmonique sur (X,L) à croissance logarithmique en zéro admet une extension plurisousharmonique canonique à l’espace hybride X hyb . Nous discutons aussi de la continuité de la famille de mesures de Monge-Ampère associée à une métrique hybride plurisousharmonique continue.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.228
Classification : 32P05, 32U05, 14D06
Keywords: Berkovich spaces, pluripotential theory, hybrid spaces
Mots-clés : Espaces de Berkovich, théorie du pluripotentiel, espaces hybrides

Pille-Schneider, Léonard 1

1 Département de Mathématiques et Applications, École Normale Supérieure 45 rue d’Ulm, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__601_0,
     author = {Pille-Schneider, L\'eonard},
     title = {Global pluripotential theory on hybrid spaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {601--658},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.228},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.228/}
}
TY  - JOUR
AU  - Pille-Schneider, Léonard
TI  - Global pluripotential theory on hybrid spaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 601
EP  - 658
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.228/
DO  - 10.5802/jep.228
LA  - en
ID  - JEP_2023__10__601_0
ER  - 
%0 Journal Article
%A Pille-Schneider, Léonard
%T Global pluripotential theory on hybrid spaces
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 601-658
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.228/
%R 10.5802/jep.228
%G en
%F JEP_2023__10__601_0
Pille-Schneider, Léonard. Global pluripotential theory on hybrid spaces. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 601-658. doi: 10.5802/jep.228

[AK00] Abramovich, D.; Karu, K. Weak semistable reduction in characteristic 0, Invent. Math., Volume 139 (2000) no. 2, pp. 241-273 | Zbl | MR | DOI

[ALT18] Adiprasito, K.; Liu, G.; Temkin, M. Semistable reduction in characteristic 0, 2018 | arXiv

[Aub78] Aubin, Thierry Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2), Volume 102 (1978) no. 1, pp. 63-95 | Zbl

[BBJ21] Berman, Robert J.; Boucksom, Sébastien; Jonsson, Mattias A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc., Volume 34 (3) (2021), pp. 605-652 | Zbl | MR | DOI

[BCHM10] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | Zbl | MR | DOI

[BE21] Boucksom, Sébastien; Eriksson, Dennis Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 124 pages | Zbl | MR | DOI

[BEGZ10] Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | Zbl | DOI

[Ber90] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, RI, 1990 | MR | DOI

[Ber99] Berkovich, Vladimir G. Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | Zbl | MR | DOI

[Ber09] Berkovich, Vladimir G. A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progr. Math.), Volume 269, Birkhäuser Boston, Boston, MA, 2009, pp. 49-67 | Zbl | MR | DOI

[BFJ08] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Valuations and plurisubharmonic singularities, Publ. RIMS, Kyoto Univ., Volume 44 (2008) no. 2, pp. 449-494 | Zbl | MR | DOI

[BFJ15] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Solution to a non-Archimedean Monge-Ampère equation, J. Amer. Math. Soc., Volume 28 (2015) no. 3, pp. 617-667 | Zbl | DOI

[BFJ16] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom., Volume 25 (2016) no. 1, pp. 77-139 | Zbl | MR | DOI

[BG14] Berman, Robert J.; Guenancia, Henri Kähler-Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1683-1730 | Zbl | DOI

[BGGJ + 20] Burgos Gil, José Ignacio; Gubler, Walter; Jell, Philipp; Künnemann, Klaus; Martin, Florent Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations, Algebraic Geom., Volume 7 (2020) no. 2, pp. 113-152 | Zbl | DOI

[BGPS14] Burgos Gil, José Ignacio; Philippon, Patrice; Sombra, Martín Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, 360, Société Mathématique de France, Paris, 2014 | Numdam

[BJ17] Boucksom, Sébastien; Jonsson, Mattias Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. polytech. Math., Volume 4 (2017), pp. 87-139 | Zbl | Numdam | MR | DOI

[BJ18] Boucksom, Sébastien; Jonsson, Mattias Singular semipositive metrics on line bundles on varieties over trivially valued fields, 2018 | arXiv

[BJ22] Boucksom, Sébastien; Jonsson, Mattias Global pluripotential theory over a trivially valued field, Ann. Fac. Sci. Toulouse Math. (6), Volume 31 (2022) no. 3, pp. 647-836 | MR | DOI

[BT76] Bedford, Eric; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | Zbl | DOI

[CL06] Chambert-Loir, Antoine Mesures et équidistribution sur les espaces de Berkovich, J. reine angew. Math., Volume 595 (2006), pp. 215-235 | Zbl | DOI

[CLD12] Chambert-Loir, Antoine; Ducros, Antoine Formes différentielles réelles et courants sur les espaces de Berkovich, 2012 | arXiv

[Dar15] Darvas, Tamás The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | Zbl | MR | DOI

[DEL00] Demailly, Jean-Pierre; Ein, Lawrence; Lazarsfeld, Robert A subadditivity property of multiplier ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | Zbl | MR | DOI

[Dem92] Demailly, Jean-Pierre Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409 | Zbl | MR

[Dem12] Demailly, Jean-Pierre Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012

[Dem16] Demailly, Jean-Pierre Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I (Adv. Lect. Math. (ALM)), Volume 35, Int. Press, Somerville, MA, 2016, pp. 191-222 | Zbl | MR

[DPS01] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | Zbl | DOI

[EGZ09] Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Singular Kähler-Einstein metrics, J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 607-639 | Zbl | DOI

[Fav20] Favre, Charles Degeneration of endomorphisms of the complex projective space in the hybrid space, J. Inst. Math. Jussieu, Volume 19 (2020) no. 4, pp. 1141-1183 | Zbl | MR | DOI

[GO22] Goto, K.; Odaka, Y. Special Lagrangian fibrations, Berkovich retraction, and crystallographic groups, 2022 | arXiv

[Gub98] Gubler, Walter Local heights of subvarieties over non-Archimedean fields, J. reine angew. Math., Volume 498 (1998), pp. 61-113 | Zbl | MR | DOI

[GZ05] Guedj, Vincent; Zeriahi, Ahmed Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | Zbl | DOI

[GZ17] Guedj, Vincent; Zeriahi, Ahmed Degenerate complex Monge-Ampère equations, EMS Tracts in Math., 26, European Mathematical Society (EMS), Zürich, 2017 | DOI

[KKMSD73] Kempf, G.; Knudsen, Finn Faye; Mumford, D.; Saint-Donat, B. Toroidal embeddings. I, Lect. Notes in Math., 339, Springer-Verlag, Berlin-New York, 1973 | DOI

[Kli91] Klimek, Maciej Pluripotential theory, London Math. Society Monographs, 6, The Clarendon Press, Oxford University Press, New York, 1991

[KNX18] Kollár, János; Nicaise, Johannes; Xu, Chen Yang Semi-stable extensions over 1-dimensional bases, Acta Mech. Sinica (English Ed.), Volume 34 (2018) no. 1, pp. 103-113 | Zbl | MR | DOI

[Kol13] Kollár, János Singularities of the minimal model program, Cambridge Tracts in Math., 200, Cambridge University Press, Cambridge, 2013 | DOI

[Koł98] Kołodziej, Sławomir The complex Monge-Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | Zbl | DOI

[KS06] Kontsevich, Maxim; Soibelman, Yan Affine structures and non-Archimedean analytic spaces, The unity of mathematics (Progress in Math.), Volume 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321-385 | Zbl | MR | DOI

[Li22] Li, Yang Strominger-Yau-Zaslow conjecture for Calabi-Yau hypersurfaces in the Fermat family, Acta Math., Volume 229 (2022) no. 1, pp. 1-53 | Zbl | MR

[Liu11] Liu, Yifeng A non-Archimedean analogue of the Calabi-Yau theorem for totally degenerate abelian varieties, J. Differential Geom., Volume 89 (2011) no. 1, pp. 87-110 http://projecteuclid.org/euclid.jdg/1324476752 | Zbl | MR

[LP20] Lemanissier, T.; Poineau, J. Espaces de Berkovich sur : catégorie, topologie, cohomologie, 2020 | arXiv

[MN15] Mustaţă, Mircea; Nicaise, Johannes Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton, Algebraic Geom., Volume 2 (2015) no. 3, pp. 365-404 | DOI | Zbl | MR

[Nad90] Nadel, Alan Michael Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2), Volume 132 (1990) no. 3, pp. 549-596 | DOI | Zbl | MR

[Poi10] Poineau, Jérôme La droite de Berkovich sur , Astérisque, 334, Société Mathématique de France, Paris, 2010 | Numdam

[Poi13] Poineau, Jérôme Les espaces de Berkovich sont angéliques, Bull. Soc. math. France, Volume 141 (2013) no. 2, pp. 267-297 | DOI | Zbl | Numdam

[Poi22] Poineau, Jérôme Dynamique analytique sur . I : Mesures d’équilibre sur une droite projective relative, 2022 | arXiv

[PS22a] Pille-Schneider, Léonard Hybrid convergence of Kähler-Einstein measures, Ann. Inst. Fourier (Grenoble), Volume 72 (2022) no. 2, pp. 587-615 | DOI | Zbl

[PS22b] Pille-Schneider, Léonard Hybrid toric varieties and the non-Archimedean SYZ fibration on Calabi-Yau hypersurfaces, 2022 | arXiv

[Reb23] Reboulet, Rémi The space of finite-energy metrics over a degeneration of complex manifolds, J. Éc. polytech. Math., Volume 10 (2023), pp. 659-701 | DOI

[Sch12] Schumacher, Georg Positivity of relative canonical bundles and applications, Invent. Math., Volume 190 (2012) no. 1, pp. 1-56 Erratum: Ibid. 192 (2013), no. 1, p. 253–255 | DOI | Zbl | MR

[Shi20a] Shivaprasad, S. Convergence of Bergman measures towards the Zhang measure, 2020 | arXiv

[Shi20b] Shivaprasad, S. Convergence of Narasimhan-Simha measures on degenerating families of Riemann surfaces, 2020 | arXiv

[Son17] Song, J. Degeneration of Kähler-Einstein manifolds of negative scalar curvature, 2017 | arXiv

[SSW20] Song, J.; Sturm, J.; Wang, X. Riemannian geometry of Kähler-Einstein currents III: compactness of Kähler-Einstein manifolds of negative scalar curvature, 2020 | arXiv

[Thu05] Thuillier, Amaury Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, Ph. D. Thesis, Université Rennes 1 (2005) (https://theses.hal.science/tel-00010990)

[Thu07] Thuillier, Amaury Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math., Volume 123 (2007) no. 4, pp. 381-451 | DOI | Zbl | MR

[Yau78] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | Zbl

[Zha95] Zhang, Shouwu Small points and adelic metrics, J. Algebraic Geom., Volume 4 (1995) no. 2, pp. 281-300 | Zbl | MR

[Zha15] Zhang, Yuguang Collapsing of negative Kähler-Einstein metrics, Math. Res. Lett., Volume 22 (2015) no. 6, pp. 1843-1869 | DOI | Zbl | MR

Cité par Sources :