Rational maps with rational multipliers
[Fractions rationnelles avec multiplicateurs rationnels]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 591-599

In this article, we show that every rational map whose multipliers all lie in a given number field is a power map, a Chebyshev map or a Lattès map. This strengthens a conjecture by Milnor concerning rational maps with integer multipliers, which was recently proved by Ji and Xie.

Dans cet article, nous montrons que toute fraction rationnelle dont les multiplicateurs sont tous dans un corps de nombres donné est une application puissance, une application de Tchebychev ou un exemple de Lattès. Ceci généralise une conjecture de Milnor concernant les fractions rationnelles avec multiplicateurs entiers, qui a été récemment démontrée par Ji et Xie.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.227
Classification : 37P35, 37F10, 37P05
Keywords: Multiplier spectrum, exceptional maps, arithmetic dynamics
Mots-clés : Multiplicateur, application exceptionnelle, dynamique arithmétique

Huguin, Valentin 1

1 Constructor University Bremen gGmbH Campus Ring 1, 28759 Bremen, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__591_0,
     author = {Huguin, Valentin},
     title = {Rational maps with rational multipliers},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {591--599},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.227},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.227/}
}
TY  - JOUR
AU  - Huguin, Valentin
TI  - Rational maps with rational multipliers
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 591
EP  - 599
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.227/
DO  - 10.5802/jep.227
LA  - en
ID  - JEP_2023__10__591_0
ER  - 
%0 Journal Article
%A Huguin, Valentin
%T Rational maps with rational multipliers
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 591-599
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.227/
%R 10.5802/jep.227
%G en
%F JEP_2023__10__591_0
Huguin, Valentin. Rational maps with rational multipliers. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 591-599. doi: 10.5802/jep.227

[Aut01] Autissier, Pascal Points entiers sur les surfaces arithmétiques, J. reine angew. Math., Volume 531 (2001), pp. 201-235 | Zbl | MR | DOI

[BR10] Baker, Matthew; Rumely, Robert Potential theory and dynamics on the Berkovich projective line, Math. Surveys and Monographs, 159, American Mathematical Society, Providence, RI, 2010 | DOI

[EvS11] Eremenko, Alexandre; van Strien, Sebastian Rational maps with real multipliers, Trans. Amer. Math. Soc., Volume 363 (2011) no. 12, pp. 6453-6463 | Zbl | MR | DOI

[FG22] Firsova, Tanya; Gorbovickis, Igors Accumulation set of critical points of the multipliers in the quadratic family, Ergodic Theory Dynam. Systems (2022) First View (22 pages) | DOI

[FLM83] Freire, Alexandre; Lopes, Artur; Mañé, Ricardo An invariant measure for rational maps, Bol. Soc. Brasil. Mat., Volume 14 (1983) no. 1, pp. 45-62 | Zbl | MR | DOI

[FRL06] Favre, Charles; Rivera-Letelier, Juan Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Volume 335 (2006) no. 2, pp. 311-361 | Zbl | DOI

[Hug21] Huguin, Valentin Unicritical polynomial maps with rational multipliers, Conform. Geom. Dyn., Volume 25 (2021), pp. 79-87 | Zbl | MR | DOI

[Hug22] Huguin, Valentin Quadratic rational maps with integer multipliers, Math. Z., Volume 302 (2022) no. 2, pp. 949-969 | Zbl | MR | DOI

[JX22] Ji, Zhuchao; Xie, Junyi Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics, 2022 | arXiv

[Lju83] Ljubich, M. Ju. Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems, Volume 3 (1983) no. 3, pp. 351-385 | MR | DOI

[Mañ83] Mañé, Ricardo On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat., Volume 14 (1983) no. 1, pp. 27-43 | Zbl | MR | DOI

[McM87] McMullen, Curt Families of rational maps and iterative root-finding algorithms, Ann. of Math. (2), Volume 125 (1987) no. 3, pp. 467-493 | Zbl | MR | DOI

[Mil06] Milnor, John On Lattès maps, Dynamics on the Riemann sphere, European Mathematical Society, Zürich, 2006, pp. 9-43 | Zbl | DOI

[Sil98] Silverman, Joseph H. The space of rational maps on 1 , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-77 | Zbl | DOI

[Zdu14] Zdunik, Anna Characteristic exponents of rational functions, Bull. Acad. Polon. Sci. Sér. Sci. Math., Volume 62 (2014) no. 3, pp. 257-263 | Zbl | DOI

Cité par Sources :