Random walks on hyperbolic spaces: second order expansion of the rate function at the drift
[Marches aléatoires sur les espaces hyperboliques : dérivée seconde en la vitesse de fuite de la fonction de taux des grandes déviations]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 549-573

Let (X,d) be a separable geodesic Gromov-hyperbolic space, oX a basepoint and μ a countably supported non-elementary probability measure on Isom(X). Denote by z n the random walk on X driven by the probability measure μ. Supposing that μ has a finite exponential moment, we give a second-order Taylor expansion of the large deviation rate function of the sequence 1 nd(z n ,o) and show that the corresponding coefficient is expressed by the variance in the central limit theorem satisfied by the sequence d(z n ,o). This provides a positive answer to a question raised in [6]. The proof relies on the study of the Laplace transform of d(z n ,o) at the origin using a martingale decomposition first introduced by Benoist–Quint together with an exponential submartingale transform and large deviation estimates for the quadratic variation process of certain martingales.

Soit (X,d) un espace Gromov-hyperbolique, géodésique et séparable, oX un point base et μ une mesure de probabilité non élémentaire et à support dénombrable sur le groupe Isom(X) des isométries de X. Notons par z n la marche aléatoire sur X induite par μ. Sous l’hypothèse de moment exponentiel fini de μ, nous donnons un développement de Taylor d’ordre 2 de la fonction de taux des grandes déviations de la suite de variables aléatoires 1 nd(z n ,o) et exprimons la dérivée seconde en la vitesse de fuite en fonction de la variance dans le théorème central limite que vérifie la suite d(z n ,o). Cela répond par l’affirmative à une question posée dans [6]. La preuve s’appuie sur l’étude de la transformée de Laplace de d(z n ,o) en zéro en utilisant une approximation par une martingale introduite pour la première fois par Benoist-Quint, combinée avec une transformée exponentielle de martingales et des estimées de grandes déviations pour le crochet de certaines martingales.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.225
Classification : 20F67, 60G50, 60G42, 60F10, 60F05
Keywords: Random walks, hyperbolic spaces, martingales, large deviations, central limit theorem
Mots-clés : Marches aléatoires, espaces hyperboliques, martingales, grandes déviations, théorème central limite

Aoun, Richard 1 ; Mathieu, Pierre 2 ; Sert, Cagri 3

1 University Gustave Eiffel, Champs-sur-Marne 5 boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
2 Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373 13453 Marseille, France
3 Institut für Mathematik, Universität Zürich 190, Winterthurerstrasse, 8057 Zürich, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__549_0,
     author = {Aoun, Richard and Mathieu, Pierre and Sert, Cagri},
     title = {Random walks on hyperbolic spaces: second order expansion of the rate function at the drift},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {549--573},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.225},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.225/}
}
TY  - JOUR
AU  - Aoun, Richard
AU  - Mathieu, Pierre
AU  - Sert, Cagri
TI  - Random walks on hyperbolic spaces: second order expansion of the rate function at the drift
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 549
EP  - 573
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.225/
DO  - 10.5802/jep.225
LA  - en
ID  - JEP_2023__10__549_0
ER  - 
%0 Journal Article
%A Aoun, Richard
%A Mathieu, Pierre
%A Sert, Cagri
%T Random walks on hyperbolic spaces: second order expansion of the rate function at the drift
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 549-573
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.225/
%R 10.5802/jep.225
%G en
%F JEP_2023__10__549_0
Aoun, Richard; Mathieu, Pierre; Sert, Cagri. Random walks on hyperbolic spaces: second order expansion of the rate function at the drift. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 549-573. doi: 10.5802/jep.225

[1] Aoun, Richard; Sert, Cagri Random walks on hyperbolic spaces: concentration inequalities and probabilistic Tits alternative, Probab. Theory Related Fields, Volume 184 (2022) no. 1-2, pp. 323-365 | MR | Zbl | DOI

[2] Benoist, Yves; Quint, Jean-François Central limit theorem for linear groups, Ann. Probability, Volume 44 (2016) no. 2, pp. 1308-1340 | MR | Zbl | DOI

[3] Benoist, Yves; Quint, Jean-François Central limit theorem on hyperbolic groups, Izv. Ross. Akad. Nauk Ser. Mat., Volume 80 (2016) no. 1, pp. 5-26 | DOI

[4] Benoist, Yves; Quint, Jean-François Random walks on reductive groups, Ergeb. Math. Grenzgeb. (3), 62, Springer, Cham, 2016 | DOI

[5] Björklund, Michael Central limit theorems for Gromov hyperbolic groups, J. Theoret. Probab., Volume 23 (2010) no. 3, pp. 871-887 | MR | Zbl | DOI

[6] Boulanger, Adrien; Mathieu, Pierre; Sert, Cagri; Sisto, Alessandro Large deviations for random walks on hyperbolic spaces, 2020 to appear in Ann. Sci. École Norm. Sup. (4) | arXiv

[7] Burkholder, D. L. Martingale transforms, Ann. Math. Statist., Volume 37 (1966), pp. 1494-1504 | MR | Zbl | DOI

[8] Choi, I. Limit laws on outer space, Teichmüller space, and CAT(0) spaces, 2022 | arXiv

[9] Choi, I. Random walks and contracting elements I: deviation inequality and limit laws, 2022 | arXiv

[10] Choi, I. Random walks and contracting elements III: outer space and outer automorphism group, 2022 | arXiv

[11] Coornaert, Michel; Delzant, Thomas; Papadopoulos, Athanase Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lect. Notes in Math., 1441, Springer-Verlag, Berlin, 1990 | DOI

[12] Dembo, Amir; Zeitouni, Ofer Large deviations techniques and applications, Stochastic Modelling and Applied Probability, 38, Springer-Verlag, Berlin, 2010 | DOI

[13] Dzhaparidze, K.; van Zanten, J. H. On Bernstein-type inequalities for martingales, Stochastic Process. Appl., Volume 93 (2001) no. 1, pp. 109-117 | DOI | MR | Zbl

[14] Fan, X.; Grama, I.; Liu, Q. Martingale inequalities of type Dzhaparidze and van Zanten, Statistics, Volume 51 (2017) no. 6, pp. 1200-1213 | DOI | MR | Zbl

[15] Freedman, David A. On tail probabilities for martingales, Ann. Probability, Volume 3 (1975), pp. 100-118 | DOI | MR | Zbl

[16] Gordin, M. I.; Lifšic, B. A. Central limit theorem for stationary Markov processes, Dokl. Akad. Nauk SSSR, Volume 239 (1978) no. 4, pp. 766-767 | MR

[17] Gorni, Gianluca Conjugation and second-order properties of convex functions, J. Math. Anal. Appl., Volume 158 (1991) no. 2, pp. 293-315 | DOI | MR | Zbl

[18] Gouëzel, Sébastien Local limit theorem for symmetric random walks in Gromov-hyperbolic groups, J. Amer. Math. Soc., Volume 27 (2014) no. 3, pp. 893-928 | DOI | MR | Zbl

[19] Gouëzel, Sébastien Analyticity of the entropy and the escape rate of random walks in hyperbolic groups, Discrete Anal. (2017), 7, 37 pages | DOI | MR | Zbl

[20] Gouëzel, Sébastien Exponential bounds for random walks on hyperbolic spaces without moment conditions, Tunis. J. Math., Volume 4 (2022) no. 4, pp. 635-671 | DOI | MR | Zbl

[21] Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude Convex analysis and minimization algorithms. I, Grundlehren Math. Wiss., 305, Springer-Verlag, Berlin, 1993

[22] Horbez, Camille Central limit theorems for mapping class groups and Out(F N ), Geom. Topol., Volume 22 (2018) no. 1, pp. 105-156 | DOI | MR | Zbl

[23] Ledrappier, François Some asymptotic properties of random walks on free groups, Topics in probability and Lie groups: boundary theory (CRM Proc. Lecture Notes), Volume 28, American Mathematical Society, Providence, RI, 2001, pp. 117-152 | DOI | MR | Zbl

[24] Liu, Quansheng; Watbled, Frédérique Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment, Stochastic Process. Appl., Volume 119 (2009) no. 10, pp. 3101-3132 | DOI | MR | Zbl

[25] Maher, Joseph; Tiozzo, Giulio Random walks on weakly hyperbolic groups, J. reine angew. Math., Volume 742 (2018), pp. 187-239 | DOI | MR | Zbl

[26] Mathieu, Pierre; Sisto, Alessandro Deviation inequalities for random walks, Duke Math. J., Volume 169 (2020) no. 5, pp. 961-1036 | DOI | MR | Zbl

[27] Miyachi, Hideki Unification of extremal length geometry on Teichmüller space via intersection number, Math. Z., Volume 278 (2014) no. 3-4, pp. 1065-1095 | DOI | MR | Zbl

[28] Nagaev, S. V. Some limit theorems for stationary Markov chains, Teor. Veroyatnost. i Primenen., Volume 2 (1957), pp. 389-416 | MR

[29] de la Peña, Victor H. A general class of exponential inequalities for martingales and ratios, Ann. Probability, Volume 27 (1999) no. 1, pp. 537-564 | DOI | MR | Zbl

[30] Victor, H A general class of exponential inequalities for martingales and ratios, Ann. Probability, Volume 27 (1999) no. 1, pp. 537-564 | DOI | MR | Zbl

[31] Wainwright, Martin J. High-dimensional statistics. A non-asymptotic viewpoint, Cambridge Series in Statistical and Probabilistic Math., 48, Cambridge University Press, Cambridge, 2019 | DOI

Cité par Sources :