[Coexistence de comportements chaotiques et elliptiques parmi les symplectomorphismes analytiques de toute surface]
We show the coexistence of chaotic behaviors (positive metric entropy) and elliptic behaviors (integrable elliptic islands) among analytic, symplectic diffeomorphisms in many isotopy classes of any closed surface. In particular this solves a problem introduced by F. Przytycki (1982).
Nous montrons la coexistence de comportements chaotique (entropie métrique positive) et elliptique (îlots elliptiques intégrables) parmi les difféomorphismes analytiques symplectiques dans de nombreuses classes d’isotopies et toute surface fermée. En particulier nous résolvons un problème introduit par F. Przytycki (1982).
Accepté le :
Publié le :
Keywords: Symplectomorphism, analytic, positive metric entropy, integrable system, elliptic island, stochastic island, coexistence
Mots-clés : Symplectomorphisme, analytique, entropie métrique positive, système integrable, îlot elliptique, îlot stochastique, coexistence
Berger, Pierre 1
CC-BY 4.0
@article{JEP_2023__10__525_0,
author = {Berger, Pierre},
title = {Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {525--547},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.224},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.224/}
}
TY - JOUR AU - Berger, Pierre TI - Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 525 EP - 547 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.224/ DO - 10.5802/jep.224 LA - en ID - JEP_2023__10__525_0 ER -
%0 Journal Article %A Berger, Pierre %T Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 525-547 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.224/ %R 10.5802/jep.224 %G en %F JEP_2023__10__525_0
Berger, Pierre. Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 525-547. doi: 10.5802/jep.224
[AKN88] Dynamical systems. III, Encyclopaedia of Math. Sciences, 3, Springer-Verlag, Berlin, 1988
[AP09] -robust transitivity for surfaces with boundary, 2009 | arXiv
[Arn21] La démonstration de la conjecture de l’entropie positive d’Herman d’après Berger et Turaev, Séminaire Bourbaki (Astérisque), Volume 430, Société Mathématique de France, Paris, 2021, pp. 1-26 | DOI | Zbl
[BG89] Real analytic Bernoulli geodesic flows on , Ergodic Theory Dynam. Systems, Volume 9 (1989) no. 1, pp. 27-45 | Zbl | MR | DOI
[Bou67] Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, 1333, Hermann, Paris, 1967
[BT19] On Herman’s positive entropy conjecture, Adv. Math., Volume 349 (2019), pp. 1234-1288 | DOI | Zbl | MR
[DM90] On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 7 (1990) no. 1, pp. 1-26 | DOI | Zbl | Numdam | MR
[Don88] Geodesic flow on the two-sphere. I. Positive measure entropy, Ergodic Theory Dynam. Systems, Volume 8 (1988) no. 4, pp. 531-553 | DOI | Zbl | MR
[Ger85] Conditional stability and real analytic pseudo-Anosov maps, Mem. Amer. Math. Soc., 54, no. 321, American Mathematical Society, Providence, RI, 1985 | MR | DOI
[GK82] Smooth models of Thurston’s pseudo-Anosov maps, Ann. Sci. École Norm. Sup. (4), Volume 15 (1982) no. 1, pp. 173-204 | Zbl | Numdam | MR | DOI
[Gor12] On stochastic sea of the standard map, Comm. Math. Phys., Volume 309 (2012) no. 1, pp. 155-192 | Zbl | MR | DOI
[Her98] Some open problems in dynamical systems, Doc. Math. (1998), pp. 797-808 Proceedings ICM (Berlin, 1998), Extra Vol. II | Zbl | MR
[Kat79] Bernoulli diffeomorphisms on surfaces, Ann. of Math. (2), Volume 110 (1979) no. 3, pp. 529-547 | Zbl | MR | DOI
[Kat80] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci. (1980) no. 51, pp. 137-173 | Zbl | Numdam | MR | DOI
[Liv04] Birth of an elliptic island in a chaotic sea, Math. Phys. Electron. J., Volume 10 (2004), 1, 13 pages http://eudml.org/doc/127666 | Zbl | MR
[Mos56] The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math., Volume 9 (1956) no. 4, pp. 673-692 | Zbl | MR | DOI
[Prz82] Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour, Ergodic Theory Dynam. Systems, Volume 2 (1982) no. 3-4, pp. 439-463 | Zbl | MR | DOI
[Sin94] Topics in ergodic theory, Princeton Math. Series, 44, Princeton University Press, Princeton, NJ, 1994
Cité par Sources :





