[Sur les systèmes quantiques dissipatifs : états fondamentaux et stabilité orbitale]
We investigate the existence and stability of ground states for a model coupling the Schrödinger equation to the wave equation in transverse directions. The model is intended to describe complex interactions between quantum particles and their environment. The result can be interpreted as a dissipation statement, induced by the energy exchanges with the environment. The proofs use either concentration-compactness arguments or spectral analysis of the linearized energy. Difficulties arise related to the fact the model does not satisfy scale invariance properties.
Nous étudions l’existence et la stabilité des états fondamentaux pour un modèle couplant l’équation de Schrödinger à l’équation d’onde dans des directions transverses. Ce modèle vise à décrire les interactions complexes entre des particules quantiques et leur environnement. Le résultat peut être interprété comme une propriété de dissipation, induite par les échanges d’énergie avec l’environnement. Les démonstrations reposent soit sur des arguments de concentration-compacité, soit sur une analyse spectrale de l’énergie linéarisée. Des difficultés surviennent liées au fait que le modèle ne satisfait pas de propriétés d’invariance d’échelle.
Accepté le :
Publié le :
Keywords: Open quantum systems, particles interacting with a vibrational field, Schrödinger-wave equation, ground states, orbital stability
Mots-clés : Systèmes quantiques ouverts, particules en interaction avec un environnement vibratoire, système Schrödinger-ondes, états fondamentaux, stabilité orbitale
Goudon, Thierry 1 ; Vivion, Léo 1
CC-BY 4.0
@article{JEP_2023__10__447_0,
author = {Goudon, Thierry and Vivion, L\'eo},
title = {On quantum dissipative systems: ground~states~and orbital stability},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {447--511},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.222},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.222/}
}
TY - JOUR AU - Goudon, Thierry AU - Vivion, Léo TI - On quantum dissipative systems: ground states and orbital stability JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 447 EP - 511 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.222/ DO - 10.5802/jep.222 LA - en ID - JEP_2023__10__447_0 ER -
%0 Journal Article %A Goudon, Thierry %A Vivion, Léo %T On quantum dissipative systems: ground states and orbital stability %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 447-511 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.222/ %R 10.5802/jep.222 %G en %F JEP_2023__10__447_0
Goudon, Thierry; Vivion, Léo. On quantum dissipative systems: ground states and orbital stability. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 447-511. doi: 10.5802/jep.222
[1] Damping of particles interacting with a vibrating medium, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 34 (2017) no. 7, pp. 1727-1758 | MR | Zbl | DOI
[2] Return to equilibrium, J. Math. Phys., Volume 41 (2000) no. 6, pp. 3985-4060 | Zbl | MR | DOI
[3] New sharp Gagliardo-Nirenberg-Sobolev inequalities and an improved Borell-Brascamp-Lieb inequality, Internat. Math. Res. Notices (2020) no. 10, pp. 3042-3083 | MR | Zbl | DOI
[4] A Hamiltonian model for linear friction in a homogeneous medium, Comm. Math. Phys., Volume 229 (2002) no. 3, pp. 511-542 | MR | Zbl | DOI
[5] Quantum tunnelling in a dissipative system, Ann. Physics, Volume 149 (1983) no. 2, pp. 374-456 | DOI
[6] Semilinear Schrödinger equations, Courant Lect. Notes in Math., 10, American Mathematical Society, Providence, RI, 2003 | DOI
[8] Soliton dynamics for the Schrödinger-Newton system, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 3, pp. 553-572 | Zbl | DOI
[9] Orbital stability: analysis meets geometry, Nonlinear Optical and Atomic Systems (Lect. Notes in Math.), Volume 2146, Springer, Cham, 2015, pp. 147-273 | MR | DOI | Zbl
[10] Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system, SIAM J. Math. Anal., Volume 48 (2016) no. 6, pp. 3984-4020 | DOI | MR | Zbl
[11] Stability analysis of a Vlasov-wave system describing particles interacting with their environment, J. Differential Equations, Volume 264 (2018) no. 12, pp. 7069-7093 | DOI | MR | Zbl
[12] Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), Volume 81 (2002) no. 9, pp. 847-875 | DOI | Zbl | MR
[13] Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus, Comm. Partial Differential Equations, Volume 38 (2013) no. 7, pp. 1123-1140 | DOI | Zbl
[14] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995) no. 1, pp. 50-68 | DOI | MR
[15] Plane wave stability analysis of Hartree and quantum dissipative systems (2022) (Technical report)
[16] Mean field limit for particles interacting with a vibrating medium, Ann. Univ. Ferrara Sez. VII (N.S.), Volume 62 (2016) no. 2, pp. 231-273 | DOI | MR | Zbl
[17] Numerical investigation of Landau damping in dynamical Lorentz gases, Phys. D, Volume 403 (2020), p. 132310, 23 | DOI | MR | Zbl
[18] Landau damping in dynamical Lorentz gases, Bull. Soc. math. France, Volume 149 (2021) no. 2, pp. 237-307 | DOI | MR | Zbl
[19] Numerical investigation of stability issues for quantum dissipative systems, J. Math. Phys., Volume 62 (2021), p. 011509 | DOI | Zbl
[20] Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., Volume 74 (1987), pp. 160-197 | DOI | MR | Zbl
[21] Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal., Volume 94 (1990) no. 2, pp. 308-348 | DOI | MR | Zbl
[22] On a model for quantum friction. I. Fermi’s golden rule and dynamics at zero temperature, Ann. Inst. H. Poincaré Phys. Théor., Volume 62 (1995) no. 1, pp. 47-68 | MR | Numdam | Zbl
[23] Ergodic properties of classical dissipative systems. I, Acta Math., Volume 181 (1998) no. 2, pp. 245-282 | DOI | MR | Zbl
[24] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 http://muse.jhu.edu/... | DOI | MR | Zbl
[25] Stability of standing waves for the Klein-Gordon-Schrödinger system, J. Math. Anal. Appl., Volume 365 (2010) no. 1, pp. 109-114 | DOI | Zbl
[26] Effective dynamics for a mechanical particle coupled to a wave field, Comm. Math. Phys., Volume 203 (1999) no. 1, pp. 1-19 | DOI | MR | Zbl
[27] Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations, Volume 22 (1997) no. 1-2, pp. 307-335 | DOI | MR | Zbl
[28] Uniqueness of positive solutions of in , Arch. Rational Mech. Anal., Volume 105 (1989) no. 3, pp. 243-266 | DOI | Zbl
[29] Normal transport properties in a metastable stationary state for a classical particle coupled to a non-Ohmic bath, J. Statist. Phys., Volume 132 (2008) no. 5, pp. 863-879 | MR | Zbl | DOI
[30] Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, Volume 2 (2009) no. 1, pp. 1-27 | MR | Zbl | DOI
[31] Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1976/77) no. 2, pp. 93-105 | MR | Zbl | DOI
[32] Analysis, Graduate Studies in Math., 14, American Mathematical Society, Providence, RI, 2001 | DOI
[33] The Choquard equation and related questions, Nonlinear Anal., Volume 4 (1980) no. 6, pp. 1063-1072 | MR | Zbl | DOI
[34] Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., Volume 49 (1982) no. 3, pp. 315-334 | Zbl | DOI
[35] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | MR | Zbl | DOI
[36] The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | DOI | MR
[37] Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Math. and its Applications, 3, The Clarendon Press, Oxford University Press, New York, 1996
[38] Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993) no. 3, pp. 553-618 | MR | Zbl | DOI
[39] Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., Volume 195 (2010) no. 2, pp. 455-467 | MR | Zbl | DOI
[40] Notes on the interaction of solitary waves for NLS, https://indico.math.cnrs.fr/event/2946/sessions/320/attachments/1152/1269/Bonn2017.pdf, 2017 (Lectures notes for a course given in the summer school “Dispersive equations, solitons, and blow-up” in September 2017 at the Hausdorff Center for Math. in Bonn)
[41] Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Rational Mech. Anal., Volume 157 (2001) no. 3, pp. 219-254 | MR | Zbl | DOI
[42] Uniqueness of positive radial solutions of in . II, Trans. Amer. Math. Soc., Volume 339 (1993), pp. 495-505 | MR | DOI
[43] Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 69 (1993) no. 2, pp. 427-454 | Zbl | DOI
[44] On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), Volume 13 (1959), pp. 115-162 | Numdam | Zbl | MR
[45] Concentration compacité à la Kenig-Merle, Séminaire Bourbaki, Vol. 2011/2012 (Astérisque), Volume 352, Société Mathématique de France, Paris, 2013, pp. 121-146 (Exp. No. 1046) | Numdam | Zbl | MR
[46] Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999), pp. 9-74 | MR | Zbl | DOI
[47] Singular integrals and differentiability properties of functions, Princeton Math. Series, 30, Princeton University Press, Princeton, N.J., 1970
[48] Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977) no. 2, pp. 149-162 http://projecteuclid.org/euclid.cmp/1103900983 | MR | DOI | Zbl
[49] Why are solitons stable?, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009) no. 1, pp. 1-33 | MR | Zbl | DOI
[50] Measure theory and integration, Graduate Studies in Math., 76, American Mathematical Society, Providence, RI, 2006 | MR | DOI
[51] Some models of particles interacting with their environment, Ph. D. Thesis, University Nice Sophia Antipolis (2016)
[52] Particules classiques et quantiques en interaction avec leur environnement : analyse de stabilité et problèmes asymptotiques, Ph. D. Thesis, Univ. Côte d’Azur (2020)
[53] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., Volume 87 (1982) no. 4, pp. 567-576 https://projecteuclid.org:443/... | DOI | Zbl
[54] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985) no. 3, pp. 472-491 | Zbl | DOI
[55] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., Volume 39 (1986) no. 1, pp. 51-67 | MR | Zbl | DOI
[56] Travelling solitary waves for boson stars, Electron. J. Differential Equations (2019), 73, 12 pages | MR | Zbl
Cité par Sources :





