On quantum dissipative systems: ground states and orbital stability
[Sur les systèmes quantiques dissipatifs : états fondamentaux et stabilité orbitale]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 447-511

We investigate the existence and stability of ground states for a model coupling the Schrödinger equation to the wave equation in transverse directions. The model is intended to describe complex interactions between quantum particles and their environment. The result can be interpreted as a dissipation statement, induced by the energy exchanges with the environment. The proofs use either concentration-compactness arguments or spectral analysis of the linearized energy. Difficulties arise related to the fact the model does not satisfy scale invariance properties.

Nous étudions l’existence et la stabilité des états fondamentaux pour un modèle couplant l’équation de Schrödinger à l’équation d’onde dans des directions transverses. Ce modèle vise à décrire les interactions complexes entre des particules quantiques et leur environnement. Le résultat peut être interprété comme une propriété de dissipation, induite par les échanges d’énergie avec l’environnement. Les démonstrations reposent soit sur des arguments de concentration-compacité, soit sur une analyse spectrale de l’énergie linéarisée. Des difficultés surviennent liées au fait que le modèle ne satisfait pas de propriétés d’invariance d’échelle.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.222
Classification : 35Q40, 35Q51, 35Q55
Keywords: Open quantum systems, particles interacting with a vibrational field, Schrödinger-wave equation, ground states, orbital stability
Mots-clés : Systèmes quantiques ouverts, particules en interaction avec un environnement vibratoire, système Schrödinger-ondes, états fondamentaux, stabilité orbitale

Goudon, Thierry 1 ; Vivion, Léo 1

1 Université Côte d’Azur, Inria, CNRS, LJAD Parc Valrose, F-06108 Nice, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__447_0,
     author = {Goudon, Thierry and Vivion, L\'eo},
     title = {On quantum dissipative systems: ground~states~and orbital stability},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {447--511},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.222},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.222/}
}
TY  - JOUR
AU  - Goudon, Thierry
AU  - Vivion, Léo
TI  - On quantum dissipative systems: ground states and orbital stability
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 447
EP  - 511
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.222/
DO  - 10.5802/jep.222
LA  - en
ID  - JEP_2023__10__447_0
ER  - 
%0 Journal Article
%A Goudon, Thierry
%A Vivion, Léo
%T On quantum dissipative systems: ground states and orbital stability
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 447-511
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.222/
%R 10.5802/jep.222
%G en
%F JEP_2023__10__447_0
Goudon, Thierry; Vivion, Léo. On quantum dissipative systems: ground states and orbital stability. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 447-511. doi: 10.5802/jep.222

[1] Alonso, Ricardo; Goudon, Thierry; Vavasseur, Arthur Damping of particles interacting with a vibrating medium, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 34 (2017) no. 7, pp. 1727-1758 | MR | Zbl | DOI

[2] Bach, Volker; Fröhlich, Jürg; Sigal, Israel Michael Return to equilibrium, J. Math. Phys., Volume 41 (2000) no. 6, pp. 3985-4060 | Zbl | MR | DOI

[3] Bolley, François; Cordero-Erausquin, Dario; Fujita, Yasuhiro; Gentil, Ivan; Guillin, Arnaud New sharp Gagliardo-Nirenberg-Sobolev inequalities and an improved Borell-Brascamp-Lieb inequality, Internat. Math. Res. Notices (2020) no. 10, pp. 3042-3083 | MR | Zbl | DOI

[4] Bruneau, Laurent; De Bièvre, Stephan A Hamiltonian model for linear friction in a homogeneous medium, Comm. Math. Phys., Volume 229 (2002) no. 3, pp. 511-542 | MR | Zbl | DOI

[5] Caldeira, A. O.; Leggett, A. J. Quantum tunnelling in a dissipative system, Ann. Physics, Volume 149 (1983) no. 2, pp. 374-456 | DOI

[6] Cazenave, Thierry Semilinear Schrödinger equations, Courant Lect. Notes in Math., 10, American Mathematical Society, Providence, RI, 2003 | DOI

[7] Cazenave, Thierry; Lions, Pierre-Louis Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., Volume 85 (1982) no. 4, pp. 549-561 http://projecteuclid.org/euclid.cmp/1103921547 | DOI | Zbl

[8] d’Avenia, Pietro; Squassina, Marco Soliton dynamics for the Schrödinger-Newton system, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 3, pp. 553-572 | Zbl | DOI

[9] De Bièvre, Stephan; Genoud, F.; Rota Nodari, S. Orbital stability: analysis meets geometry, Nonlinear Optical and Atomic Systems (Lect. Notes in Math.), Volume 2146, Springer, Cham, 2015, pp. 147-273 | MR | DOI | Zbl

[10] De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system, SIAM J. Math. Anal., Volume 48 (2016) no. 6, pp. 3984-4020 | DOI | MR | Zbl

[11] De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur Stability analysis of a Vlasov-wave system describing particles interacting with their environment, J. Differential Equations, Volume 264 (2018) no. 12, pp. 7069-7093 | DOI | MR | Zbl

[12] Del Pino, Manuel; Dolbeault, Jean Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), Volume 81 (2002) no. 9, pp. 847-875 | DOI | Zbl | MR

[13] Faou, Erwan; Gauckler, Ludwig; Lubich, Christian Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus, Comm. Partial Differential Equations, Volume 38 (2013) no. 7, pp. 1123-1140 | DOI | Zbl

[14] Ginibre, J.; Velo, G. Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995) no. 1, pp. 50-68 | DOI | MR

[15] Goudon, Thierry; Rota Nodari, S. Plane wave stability analysis of Hartree and quantum dissipative systems (2022) (Technical report)

[16] Goudon, Thierry; Vavasseur, Arthur Mean field limit for particles interacting with a vibrating medium, Ann. Univ. Ferrara Sez. VII (N.S.), Volume 62 (2016) no. 2, pp. 231-273 | DOI | MR | Zbl

[17] Goudon, Thierry; Vivion, Léo Numerical investigation of Landau damping in dynamical Lorentz gases, Phys. D, Volume 403 (2020), p. 132310, 23 | DOI | MR | Zbl

[18] Goudon, Thierry; Vivion, Léo Landau damping in dynamical Lorentz gases, Bull. Soc. math. France, Volume 149 (2021) no. 2, pp. 237-307 | DOI | MR | Zbl

[19] Goudon, Thierry; Vivion, Léo Numerical investigation of stability issues for quantum dissipative systems, J. Math. Phys., Volume 62 (2021), p. 011509 | DOI | Zbl

[20] Grillakis, Manoussos; Shatah, Jalal; Strauss, Walter Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., Volume 74 (1987), pp. 160-197 | DOI | MR | Zbl

[21] Grillakis, Manoussos; Shatah, Jalal; Strauss, Walter Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal., Volume 94 (1990) no. 2, pp. 308-348 | DOI | MR | Zbl

[22] Jakšić, Vojkan; Pillet, Claude-Alain On a model for quantum friction. I. Fermi’s golden rule and dynamics at zero temperature, Ann. Inst. H. Poincaré Phys. Théor., Volume 62 (1995) no. 1, pp. 47-68 | MR | Numdam | Zbl

[23] Jakšić, Vojkan; Pillet, Claude-Alain Ergodic properties of classical dissipative systems. I, Acta Math., Volume 181 (1998) no. 2, pp. 245-282 | DOI | MR | Zbl

[24] Keel, Markus; Tao, Terence Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 http://muse.jhu.edu/... | DOI | MR | Zbl

[25] Kikuchi, Hiroaki; Ohta, Masahito Stability of standing waves for the Klein-Gordon-Schrödinger system, J. Math. Anal. Appl., Volume 365 (2010) no. 1, pp. 109-114 | DOI | Zbl

[26] Komech, Alexander; Kunze, Markus; Spohn, Herbert Effective dynamics for a mechanical particle coupled to a wave field, Comm. Math. Phys., Volume 203 (1999) no. 1, pp. 1-19 | DOI | MR | Zbl

[27] Komech, Alexander; Spohn, Herbert; Kunze, Markus Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations, Volume 22 (1997) no. 1-2, pp. 307-335 | DOI | MR | Zbl

[28] Kwong, Man Kam Uniqueness of positive solutions of Δu-u+u p =0 in R n , Arch. Rational Mech. Anal., Volume 105 (1989) no. 3, pp. 243-266 | DOI | Zbl

[29] Lafitte, P.; Parris, P. E.; De Bièvre, S. Normal transport properties in a metastable stationary state for a classical particle coupled to a non-Ohmic bath, J. Statist. Phys., Volume 132 (2008) no. 5, pp. 863-879 | MR | Zbl | DOI

[30] Lenzmann, Enno Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, Volume 2 (2009) no. 1, pp. 1-27 | MR | Zbl | DOI

[31] Lieb, Elliott H. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1976/77) no. 2, pp. 93-105 | MR | Zbl | DOI

[32] Lieb, Elliott H.; Loss, Michael Analysis, Graduate Studies in Math., 14, American Mathematical Society, Providence, RI, 2001 | DOI

[33] Lions, Pierre-Louis The Choquard equation and related questions, Nonlinear Anal., Volume 4 (1980) no. 6, pp. 1063-1072 | MR | Zbl | DOI

[34] Lions, Pierre-Louis Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., Volume 49 (1982) no. 3, pp. 315-334 | Zbl | DOI

[35] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | MR | Zbl | DOI

[36] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | DOI | MR

[37] Lions, Pierre-Louis Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Math. and its Applications, 3, The Clarendon Press, Oxford University Press, New York, 1996

[38] Lions, Pierre-Louis; Paul, Thierry Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993) no. 3, pp. 553-618 | MR | Zbl | DOI

[39] Ma, Li; Zhao, Lin Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., Volume 195 (2010) no. 2, pp. 455-467 | MR | Zbl | DOI

[40] Martel, Yvan Notes on the interaction of solitary waves for NLS, https://indico.math.cnrs.fr/event/2946/sessions/320/attachments/1152/1269/Bonn2017.pdf, 2017 (Lectures notes for a course given in the summer school “Dispersive equations, solitons, and blow-up” in September 2017 at the Hausdorff Center for Math. in Bonn)

[41] Martel, Yvan; Merle, Frank Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Rational Mech. Anal., Volume 157 (2001) no. 3, pp. 219-254 | MR | Zbl | DOI

[42] McLeod, K. Uniqueness of positive radial solutions of Δu+f(u)=0 in n . II, Trans. Amer. Math. Soc., Volume 339 (1993), pp. 495-505 | MR | DOI

[43] Merle, F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 69 (1993) no. 2, pp. 427-454 | Zbl | DOI

[44] Nirenberg, L. On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), Volume 13 (1959), pp. 115-162 | Numdam | Zbl | MR

[45] Raphaël, Pierre Concentration compacité à la Kenig-Merle, Séminaire Bourbaki, Vol. 2011/2012 (Astérisque), Volume 352, Société Mathématique de France, Paris, 2013, pp. 121-146 (Exp. No. 1046) | Numdam | Zbl | MR

[46] Soffer, A.; Weinstein, Michael I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999), pp. 9-74 | MR | Zbl | DOI

[47] Stein, Elias M. Singular integrals and differentiability properties of functions, Princeton Math. Series, 30, Princeton University Press, Princeton, N.J., 1970

[48] Strauss, Walter A. Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977) no. 2, pp. 149-162 http://projecteuclid.org/euclid.cmp/1103900983 | MR | DOI | Zbl

[49] Tao, Terence Why are solitons stable?, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009) no. 1, pp. 1-33 | MR | Zbl | DOI

[50] Taylor, Michael E. Measure theory and integration, Graduate Studies in Math., 76, American Mathematical Society, Providence, RI, 2006 | MR | DOI

[51] Vavasseur, A. Some models of particles interacting with their environment, Ph. D. Thesis, University Nice Sophia Antipolis (2016)

[52] Vivion, L. Particules classiques et quantiques en interaction avec leur environnement : analyse de stabilité et problèmes asymptotiques, Ph. D. Thesis, Univ. Côte d’Azur (2020)

[53] Weinstein, Michael I. Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., Volume 87 (1982) no. 4, pp. 567-576 https://projecteuclid.org:443/... | DOI | Zbl

[54] Weinstein, Michael I. Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985) no. 3, pp. 472-491 | Zbl | DOI

[55] Weinstein, Michael I. Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., Volume 39 (1986) no. 1, pp. 51-67 | MR | Zbl | DOI

[56] Zhang, Guoqing; Song, Ningning Travelling solitary waves for boson stars, Electron. J. Differential Equations (2019), 73, 12 pages | MR | Zbl

Cité par Sources :