The diagonal of the multiplihedra and the tensor product of A -morphisms
[La diagonale des multiplièdres et le produit tensoriel de morphismes A-infini]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 405-446

We define a cellular approximation for the diagonal of the Forcey–Loday realizations of the multiplihedra, and endow them with a compatible topological cellular operadic bimodule structure over the Loday realizations of the associahedra. This provides us with a model for topological and algebraic A -morphisms, as well as a universal and explicit formula for their tensor product. We study the monoidal properties of this newly defined tensor product and conclude by outlining several applications, notably in algebraic and symplectic topology.

On définit une approximation cellulaire de la diagonale des réalisations de Forcey–Loday des multiplièdres, et on les munit d’une structure de bimodule opéradique topologique et cellulaire compatible sur les réalisations de Loday des associaèdres. On obtient ainsi un modèle algébrique et topologique pour les morphismes A-infini, de même qu’une formule universelle explicite pour leur produit tensoriel. On étudie la monoïdalité de ce nouveau produit tensoriel et on conclut en esquissant plusieurs applications en topologie algébrique et en topologie symplectique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.221
Classification : 52B11, 18M70
Keywords: Multiplihedra, approximation of the diagonal, associahedra, operads, tensor product, A-infinity algebras, A-infinity morphisms, A-infinity categories
Mots-clés : Multiplièdres, approximation de la diagonale, associaèdres, opérades, produit tensoriel, algèbres A-infini, morphismes A-infini, catégories A-infini

Laplante-Anfossi, Guillaume 1 ; Mazuir, Thibaut 2

1 School of Mathematics and Statistics, University of Melbourne Parkville, VIC, 3010, Australia
2 Institut für Mathematik, Humboldt Universität zu Berlin Rudower Chaussee 25, 12489 Berlin, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__405_0,
     author = {Laplante-Anfossi, Guillaume and Mazuir, Thibaut},
     title = {The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {405--446},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.221},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.221/}
}
TY  - JOUR
AU  - Laplante-Anfossi, Guillaume
AU  - Mazuir, Thibaut
TI  - The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 405
EP  - 446
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.221/
DO  - 10.5802/jep.221
LA  - en
ID  - JEP_2023__10__405_0
ER  - 
%0 Journal Article
%A Laplante-Anfossi, Guillaume
%A Mazuir, Thibaut
%T The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 405-446
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.221/
%R 10.5802/jep.221
%G en
%F JEP_2023__10__405_0
Laplante-Anfossi, Guillaume; Mazuir, Thibaut. The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 405-446. doi: 10.5802/jep.221

[AACD11] Arias Abad, Camilo; Crainic, Marius; Dherin, Benoit Tensor products of representations up to homotopy, J. Homotopy Relat. Struct., Volume 6 (2011) no. 2, pp. 239-288 | Zbl | MR

[AD13] Ardila, Federico; Doker, Jeffrey Lifted generalized permutahedra and composition polynomials, Adv. in Appl. Math., Volume 50 (2013) no. 4, pp. 607-633 | MR | Zbl | DOI

[Amo16] Amorim, Lino Tensor product of filtered A -algebras, J. Pure Appl. Algebra, Volume 220 (2016) no. 12, pp. 3984-4016 | Zbl | MR | DOI

[Amo17] Amorim, Lino The Künneth theorem for the Fukaya algebra of a product of Lagrangians, Internat. J. Math., Volume 28 (2017) no. 4, 1750026, 38 pages | Zbl | MR | DOI

[Aur14] Auroux, Denis A beginner’s introduction to Fukaya categories, Contact and symplectic topology (Bolyai Soc. Math. Stud.), Volume 26, János Bolyai Mathematical Society, Budapest, 2014, pp. 85-136 | DOI | Zbl | MR

[Bro59] Brown, Edgar H. Jr. Twisted tensor products. I, Ann. of Math. (2), Volume 69 (1959), pp. 223-246 | DOI | MR | Zbl

[BS92] Billera, Louis J.; Sturmfels, Bernd Fiber polytopes, Ann. of Math. (2), Volume 135 (1992) no. 3, pp. 527-549 | DOI | Zbl | MR

[BV73] Boardman, John M.; Vogt, Rainer M. Homotopy invariant algebraic structures on topological spaces, Lect. Notes in Math., 347, Springer-Verlag, Berlin, 1973 | DOI

[CP22] Chapoton, Frédéric; Pilaud, Vincent Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, 2022 | arXiv

[CZ12] Ceballos, Cesar; Ziegler, Günter M. Realizing the associahedron: mysteries and questions, Associahedra, Tamari lattices and related structures (Progress in Math.), Volume 299, Birkhäuser/Springer, Basel, 2012, pp. 119-127 | DOI | Zbl | MR

[DF08] Devadoss, Satyan; Forcey, Stefan Marked tubes and the graph multiplihedron, Algebraic Geom. Topol., Volume 8 (2008) no. 4, pp. 2081-2108 | DOI | Zbl | MR

[Dok11] Doker, Jeffrey Samuel Geometry of generalized permutohedra, Ph. D. Thesis, University of California, Berkeley (2011)

[DSV22] Dotsenko, Vladimir; Shadrin, Sergey; Vallette, Bruno Maurer-Cartan methods in deformation theory: the twisting procedure, Cambridge University Press, 2022 (to appear)

[EML53] Eilenberg, S.; Mac Lane, S. On the groups of H(Π,n). I, Ann. of Math. (2), Volume 58 (1953), pp. 55-106 | DOI

[FMMS21] Friedman, Greg; Medina-Mardones, Anibal M.; Sinha, Dev Flowing from intersection product to cup product, 2021 | arXiv

[FOOO09] Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru Lagrangian intersection Floer theory: anomaly and obstruction. Parts I & II, AMS/IP Studies in Advanced Math., 46, American Mathematical Society, Providence, RI, 2009 | DOI

[For08] Forcey, Stefan Convex hull realizations of the multiplihedra, Topology Appl., Volume 156 (2008) no. 2, pp. 326-347 | DOI | Zbl | MR

[Fra07] Frankland, Martin Théorème de Künneth en homologie de Morse, Ann. Sci. Math. Québec, Volume 31 (2007), pp. 31-39 | Zbl | MR

[FS97] Fulton, William; Sturmfels, Bernd Intersection theory on toric varieties, Topology, Volume 36 (1997), pp. 335-353 | DOI | MR | Zbl

[Fuk10] Fukaya, Kenji Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math., Volume 50 (2010) no. 3, pp. 521-590 | DOI | Zbl | MR

[Fuk17] Fukaya, Kenji Unobstructed immersed Lagrangian correspondence and filtered A functor, 2017 | arXiv

[HM12] Hirsh, Joseph; Millès, Joan Curved Koszul duality theory, Math. Ann., Volume 354 (2012) no. 4, pp. 1465-1520 | DOI | MR | Zbl

[LA22] Laplante-Anfossi, Guillaume The diagonal of the operahedra, Adv. Math., Volume 405 (2022), 108494, 50 pages | DOI | Zbl | MR

[LH03] Lefèvre-Hasegawa, Kenji Sur les A -catégories, Ph. D. Thesis, Université Paris 7, UFR de Mathématiques (2003)

[Lod04] Loday, Jean-Louis Realization of the Stasheff polytope, Arch. Math. (Basel), Volume 83 (2004) no. 3, pp. 267-278 | DOI | Zbl | MR

[LOT20] Lipshitz, Robert; Ozsváth, Peter; Thurston, Dylan P. Diagonals and A-infinity tensor products, 2020 | arXiv

[LV12] Loday, Jean-Louis; Vallette, Bruno Algebraic operads, Grundlehren Math. Wiss., 346, Springer-Verlag, Berlin, 2012 | DOI

[May72] May, J. P. The geometry of iterated loop spaces, Lect. Notes in Math., 271, Springer-Verlag, Berlin, 1972 | DOI

[Maz21a] Mazuir, Thibaut Higher algebra of A and ΩBAs-algebras in Morse theory. I, 2021 | arXiv

[Maz21b] Mazuir, Thibaut Higher algebra of A and ΩBAs-algebras in Morse theory. II, 2021 | arXiv

[MS06] Markl, Martin; Shnider, Steve Associahedra, cellular W-construction and products of A -algebras, Trans. Amer. Math. Soc., Volume 358 (2006) no. 6, pp. 2353-2372 | DOI | Zbl | MR

[MSS02] Markl, Martin; Shnider, Steve; Stasheff, James D. Operads in algebra, topology and physics, Math. Surveys and Monographs, 96, American Mathematical Society, Providence, RI, 2002 | DOI

[MT14] Muro, Fernando; Tonks, Andrew Unital associahedra, Forum Math., Volume 26 (2014) no. 2, pp. 593-620 | DOI | Zbl | MR

[MTTV21] Masuda, Naruki; Thomas, Hugh; Tonks, Andy; Vallette, Bruno The diagonal of the associahedra, J. Éc. polytech. Math., Volume 8 (2021), pp. 121-146 | DOI | Zbl | Numdam | MR

[MW10] Ma’u, S.; Woodward, C. Geometric realizations of the multiplihedra, Compositio Math., Volume 146 (2010) no. 4, pp. 1002-1028 | DOI | Zbl | MR

[MWW18] Ma’u, S.; Wehrheim, K.; Woodward, C. A functors for Lagrangian correspondences, Selecta Math. (N.S.), Volume 24 (2018) no. 3, pp. 1913-2002 | DOI | Zbl | MR

[OEI22] OEIS The on-line encyclopedia of integer sequences, 2022 (http://oeis.org)

[Pol20] Poliakova, Daria Cellular chains on freehedra and operadic pairs, 2020 | arXiv

[Pos09] Postnikov, Alexander Permutohedra, associahedra, and beyond, Internat. Math. Res. Notices (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl

[Pro86] Prouté, Alain A -structures, modèle minimal de Baues-Lemaire et homologie des fibrations, Ph. D. Thesis, Université Paris 7, UFR de Mathématiques (1986)

[RNW19a] Robert-Nicoud, Daniel; Wierstra, Felix Convolution algebras and the deformation theory of infinity-morphisms, Homology Homotopy Appl., Volume 21 (2019), pp. 351-373 | DOI | MR

[RNW19b] Robert-Nicoud, Daniel; Wierstra, Felix Homotopy morphisms between convolution homotopy Lie algebras, J. Noncommut. Geom., Volume 13 (2019), pp. 1435-1462 | DOI | Zbl | MR

[Sei08] Seidel, Paul Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Math., European Mathematical Society, Zürich, 2008 | DOI

[Ser51] Serre, Jean-Pierre Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2), Volume 54 (1951), pp. 425-505 | DOI | Zbl

[Smi15] Smith, Ivan A symplectic prolegomenon, Bull. Amer. Math. Soc. (N.S.), Volume 52 (2015) no. 3, pp. 415-464 | DOI | Zbl | MR

[Sta63] Stasheff, James D. Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc., Volume 108 (1963), p. 275-292 & 293–312 | DOI | Zbl | MR

[Sta70] Stasheff, James D. H-spaces from a homotopy point of view, Lect. Notes in Math., 161, Springer-Verlag, Berlin, 1970 | DOI

[SU04] Saneblidze, Samson; Umble, Ronald Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl., Volume 6 (2004) no. 1, pp. 363-411 | Zbl | MR | DOI

[SU22] Saneblidze, Samson; Umble, Ronald Comparing diagonals on the associahedra, 2022 | arXiv

[Tho18] Thorngren, Ryan George Combinatorial topology and applications to quantum field theory, Ph. D. Thesis, UC Berkeley (2018) (Available online at https://escholarship.org/uc/item/7r44w49f)

[Val20] Vallette, Bruno Homotopy theory of homotopy algebras, Ann. Inst. Fourier (Grenoble), Volume 70 (2020) no. 2, pp. 683-738 | DOI | Zbl | Numdam | MR

[Yau16] Yau, Donald Colored operads, Graduate Studies in Math., 170, American Mathematical Society, Providence, RI, 2016 | DOI

[Zie95] Ziegler, Günter M. Lectures on polytopes, Graduate Texts in Math., 152, Springer-Verlag, New York, 1995 | DOI

Cité par Sources :