[La diagonale des multiplièdres et le produit tensoriel de morphismes A-infini]
We define a cellular approximation for the diagonal of the Forcey–Loday realizations of the multiplihedra, and endow them with a compatible topological cellular operadic bimodule structure over the Loday realizations of the associahedra. This provides us with a model for topological and algebraic -morphisms, as well as a universal and explicit formula for their tensor product. We study the monoidal properties of this newly defined tensor product and conclude by outlining several applications, notably in algebraic and symplectic topology.
On définit une approximation cellulaire de la diagonale des réalisations de Forcey–Loday des multiplièdres, et on les munit d’une structure de bimodule opéradique topologique et cellulaire compatible sur les réalisations de Loday des associaèdres. On obtient ainsi un modèle algébrique et topologique pour les morphismes A-infini, de même qu’une formule universelle explicite pour leur produit tensoriel. On étudie la monoïdalité de ce nouveau produit tensoriel et on conclut en esquissant plusieurs applications en topologie algébrique et en topologie symplectique.
Accepté le :
Publié le :
Keywords: Multiplihedra, approximation of the diagonal, associahedra, operads, tensor product, A-infinity algebras, A-infinity morphisms, A-infinity categories
Mots-clés : Multiplièdres, approximation de la diagonale, associaèdres, opérades, produit tensoriel, algèbres A-infini, morphismes A-infini, catégories A-infini
Laplante-Anfossi, Guillaume 1 ; Mazuir, Thibaut 2
CC-BY 4.0
@article{JEP_2023__10__405_0,
author = {Laplante-Anfossi, Guillaume and Mazuir, Thibaut},
title = {The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {405--446},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.221},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.221/}
}
TY - JOUR
AU - Laplante-Anfossi, Guillaume
AU - Mazuir, Thibaut
TI - The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms
JO - Journal de l’École polytechnique — Mathématiques
PY - 2023
SP - 405
EP - 446
VL - 10
PB - Ecole polytechnique
UR - https://www.numdam.org/articles/10.5802/jep.221/
DO - 10.5802/jep.221
LA - en
ID - JEP_2023__10__405_0
ER -
%0 Journal Article
%A Laplante-Anfossi, Guillaume
%A Mazuir, Thibaut
%T The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 405-446
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.221/
%R 10.5802/jep.221
%G en
%F JEP_2023__10__405_0
Laplante-Anfossi, Guillaume; Mazuir, Thibaut. The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 405-446. doi: 10.5802/jep.221
[AACD11] Tensor products of representations up to homotopy, J. Homotopy Relat. Struct., Volume 6 (2011) no. 2, pp. 239-288 | Zbl | MR
[AD13] Lifted generalized permutahedra and composition polynomials, Adv. in Appl. Math., Volume 50 (2013) no. 4, pp. 607-633 | MR | Zbl | DOI
[Amo16] Tensor product of filtered -algebras, J. Pure Appl. Algebra, Volume 220 (2016) no. 12, pp. 3984-4016 | Zbl | MR | DOI
[Amo17] The Künneth theorem for the Fukaya algebra of a product of Lagrangians, Internat. J. Math., Volume 28 (2017) no. 4, 1750026, 38 pages | Zbl | MR | DOI
[Aur14] A beginner’s introduction to Fukaya categories, Contact and symplectic topology (Bolyai Soc. Math. Stud.), Volume 26, János Bolyai Mathematical Society, Budapest, 2014, pp. 85-136 | DOI | Zbl | MR
[Bro59] Twisted tensor products. I, Ann. of Math. (2), Volume 69 (1959), pp. 223-246 | DOI | MR | Zbl
[BS92] Fiber polytopes, Ann. of Math. (2), Volume 135 (1992) no. 3, pp. 527-549 | DOI | Zbl | MR
[BV73] Homotopy invariant algebraic structures on topological spaces, Lect. Notes in Math., 347, Springer-Verlag, Berlin, 1973 | DOI
[CP22] Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, 2022 | arXiv
[CZ12] Realizing the associahedron: mysteries and questions, Associahedra, Tamari lattices and related structures (Progress in Math.), Volume 299, Birkhäuser/Springer, Basel, 2012, pp. 119-127 | DOI | Zbl | MR
[DF08] Marked tubes and the graph multiplihedron, Algebraic Geom. Topol., Volume 8 (2008) no. 4, pp. 2081-2108 | DOI | Zbl | MR
[Dok11] Geometry of generalized permutohedra, Ph. D. Thesis, University of California, Berkeley (2011)
[DSV22] Maurer-Cartan methods in deformation theory: the twisting procedure, Cambridge University Press, 2022 (to appear)
[EML53] On the groups of . I, Ann. of Math. (2), Volume 58 (1953), pp. 55-106 | DOI
[FMMS21] Flowing from intersection product to cup product, 2021 | arXiv
[FOOO09] Lagrangian intersection Floer theory: anomaly and obstruction. Parts I & II, AMS/IP Studies in Advanced Math., 46, American Mathematical Society, Providence, RI, 2009 | DOI
[For08] Convex hull realizations of the multiplihedra, Topology Appl., Volume 156 (2008) no. 2, pp. 326-347 | DOI | Zbl | MR
[Fra07] Théorème de Künneth en homologie de Morse, Ann. Sci. Math. Québec, Volume 31 (2007), pp. 31-39 | Zbl | MR
[FS97] Intersection theory on toric varieties, Topology, Volume 36 (1997), pp. 335-353 | DOI | MR | Zbl
[Fuk10] Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math., Volume 50 (2010) no. 3, pp. 521-590 | DOI | Zbl | MR
[Fuk17] Unobstructed immersed Lagrangian correspondence and filtered functor, 2017 | arXiv
[HM12] Curved Koszul duality theory, Math. Ann., Volume 354 (2012) no. 4, pp. 1465-1520 | DOI | MR | Zbl
[LA22] The diagonal of the operahedra, Adv. Math., Volume 405 (2022), 108494, 50 pages | DOI | Zbl | MR
[LH03] Sur les -catégories, Ph. D. Thesis, Université Paris 7, UFR de Mathématiques (2003)
[Lod04] Realization of the Stasheff polytope, Arch. Math. (Basel), Volume 83 (2004) no. 3, pp. 267-278 | DOI | Zbl | MR
[LOT20] Diagonals and A-infinity tensor products, 2020 | arXiv
[LV12] Algebraic operads, Grundlehren Math. Wiss., 346, Springer-Verlag, Berlin, 2012 | DOI
[May72] The geometry of iterated loop spaces, Lect. Notes in Math., 271, Springer-Verlag, Berlin, 1972 | DOI
[Maz21a] Higher algebra of and -algebras in Morse theory. I, 2021 | arXiv
[Maz21b] Higher algebra of and -algebras in Morse theory. II, 2021 | arXiv
[MS06] Associahedra, cellular -construction and products of -algebras, Trans. Amer. Math. Soc., Volume 358 (2006) no. 6, pp. 2353-2372 | DOI | Zbl | MR
[MSS02] Operads in algebra, topology and physics, Math. Surveys and Monographs, 96, American Mathematical Society, Providence, RI, 2002 | DOI
[MT14] Unital associahedra, Forum Math., Volume 26 (2014) no. 2, pp. 593-620 | DOI | Zbl | MR
[MTTV21] The diagonal of the associahedra, J. Éc. polytech. Math., Volume 8 (2021), pp. 121-146 | DOI | Zbl | Numdam | MR
[MW10] Geometric realizations of the multiplihedra, Compositio Math., Volume 146 (2010) no. 4, pp. 1002-1028 | DOI | Zbl | MR
[MWW18] functors for Lagrangian correspondences, Selecta Math. (N.S.), Volume 24 (2018) no. 3, pp. 1913-2002 | DOI | Zbl | MR
[OEI22] The on-line encyclopedia of integer sequences, 2022 (http://oeis.org)
[Pol20] Cellular chains on freehedra and operadic pairs, 2020 | arXiv
[Pos09] Permutohedra, associahedra, and beyond, Internat. Math. Res. Notices (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[Pro86] -structures, modèle minimal de Baues-Lemaire et homologie des fibrations, Ph. D. Thesis, Université Paris 7, UFR de Mathématiques (1986)
[RNW19a] Convolution algebras and the deformation theory of infinity-morphisms, Homology Homotopy Appl., Volume 21 (2019), pp. 351-373 | DOI | MR
[RNW19b] Homotopy morphisms between convolution homotopy Lie algebras, J. Noncommut. Geom., Volume 13 (2019), pp. 1435-1462 | DOI | Zbl | MR
[Sei08] Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Math., European Mathematical Society, Zürich, 2008 | DOI
[Ser51] Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2), Volume 54 (1951), pp. 425-505 | DOI | Zbl
[Smi15] A symplectic prolegomenon, Bull. Amer. Math. Soc. (N.S.), Volume 52 (2015) no. 3, pp. 415-464 | DOI | Zbl | MR
[Sta63] Homotopy associativity of -spaces. I, II, Trans. Amer. Math. Soc., Volume 108 (1963), p. 275-292 & 293–312 | DOI | Zbl | MR
[Sta70] -spaces from a homotopy point of view, Lect. Notes in Math., 161, Springer-Verlag, Berlin, 1970 | DOI
[SU04] Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl., Volume 6 (2004) no. 1, pp. 363-411 | Zbl | MR | DOI
[SU22] Comparing diagonals on the associahedra, 2022 | arXiv
[Tho18] Combinatorial topology and applications to quantum field theory, Ph. D. Thesis, UC Berkeley (2018) (Available online at https://escholarship.org/uc/item/7r44w49f)
[Val20] Homotopy theory of homotopy algebras, Ann. Inst. Fourier (Grenoble), Volume 70 (2020) no. 2, pp. 683-738 | DOI | Zbl | Numdam | MR
[Yau16] Colored operads, Graduate Studies in Math., 170, American Mathematical Society, Providence, RI, 2016 | DOI
[Zie95] Lectures on polytopes, Graduate Texts in Math., 152, Springer-Verlag, New York, 1995 | DOI
Cité par Sources :





