[Asymptotiques et théorèmes limites pour intégrales ergodiques des les flots horocycliques à la Ratner]
We apply a method inspired by Ratner’s work on quantitative mixing for the geodesic flow [29] and developed by Burger [11] to study ergodic integrals for horocycle flows. We derive an explicit asymptotic expansion for horocycle averages, recovering a celebrated result by Flaminio and Forni [15], and we show that the coefficients in the asymptotic expansion are Hölder continuous with respect to the base point. Furthermore, we provide short and streamlined proofs of the spatial limit theorems of Bufetov and Forni [10] and, in an appendix by Emilio Corso, of a temporal limit theorem by Dolgopyat and Sarig [12].
Nous appliquons une méthode inspirée du travail de Ratner sur le mélange quantitatif pour le flot géodésique [29] et développée par Burger [11] pour étudier les intégrales ergodiques pour les flots horocycliques. Nous en déduisons un développement asymptotique explicite pour les moyennes horocycliques, retrouvant ainsi un résultat célèbre de Flaminio et Forni [15], et nous montrons que les coefficients dans le développement asymptotique sont Hölder continus par rapport au point de base. En outre, nous fournissons des preuves courtes et simplifiées des théorèmes limites spatiaux de Bufetov et Forni [10] et, dans un appendice d’Emilio Corso, d’un théorème limite temporel de Dolgopyat et Sarig [12].
Accepté le :
Publié le :
Keywords: Horocycle flow, ergodic averages, distributional limit theorems
Mots-clés : Flot horocyclique, moyennes ergodiques, théorèmes limites distributionnels
Ravotti, Davide 1
CC-BY 4.0
@article{JEP_2023__10__305_0,
author = {Ravotti, Davide},
title = {Asymptotics and limit theorems for horocycle ergodic integrals \`a la {Ratner} (with~an~appendix by {Emilio} {Corso)}},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {305--334},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.219},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.219/}
}
TY - JOUR AU - Ravotti, Davide TI - Asymptotics and limit theorems for horocycle ergodic integrals à la Ratner (with an appendix by Emilio Corso) JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 305 EP - 334 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.219/ DO - 10.5802/jep.219 LA - en ID - JEP_2023__10__305_0 ER -
%0 Journal Article %A Ravotti, Davide %T Asymptotics and limit theorems for horocycle ergodic integrals à la Ratner (with an appendix by Emilio Corso) %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 305-334 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.219/ %R 10.5802/jep.219 %G en %F JEP_2023__10__305_0
Ravotti, Davide. Asymptotics and limit theorems for horocycle ergodic integrals à la Ratner (with an appendix by Emilio Corso). Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 305-334. doi: 10.5802/jep.219
[1] Horocycle averages on closed manifolds and transfer operators, Tunis. J. Math., Volume 4 (2022) no. 3, pp. 387-441 | DOI | Zbl | MR
[2] The visits to zero of a random walk driven by an irrational rotation, Israel J. Math., Volume 207 (2015) no. 2, pp. 653-717 | DOI | Zbl | MR
[3] Mixing for smooth time-changes of general nilflows, Adv. Math., Volume 385 (2021), 107759, 65 pages | DOI | Zbl | MR
[4] Irreducible unitary representations of the Lorentz group, Ann. of Math. (2), Volume 48 (1947), pp. 568-640 | DOI | Zbl | MR
[5] Randomness of the square root of 2 and the giant leap, Part 1, Period. Math. Hungar., Volume 60 (2010) no. 2, pp. 137-242 | DOI | Zbl | MR
[6] Randomness of the square root of 2 and the giant leap, Part 2, Period. Math. Hungar., Volume 62 (2011) no. 2, pp. 127-246 | Zbl | MR | DOI
[7] Convergence of probability measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York, 1999 | DOI
[8] A temporal central limit theorem for real-valued cocycles over rotations, Ann. Inst. H. Poincaré Probab. Statist., Volume 54 (2018) no. 4, pp. 2304-2334 | Zbl | MR | DOI
[9] Limit theorems for translation flows, Ann. of Math. (2), Volume 179 (2014) no. 2, pp. 431-499 | Zbl | MR | DOI
[10] Limit theorems for horocycle flows, Ann. Sci. École Norm. Sup. (4), Volume 47 (2014) no. 5, pp. 851-903 | Zbl | MR | DOI
[11] Horocycle flow on geometrically finite surfaces, Duke Math. J., Volume 61 (1990) no. 3, pp. 779-803 | Zbl | MR | DOI
[12] Temporal distributional limit theorems for dynamical systems, J. Statist. Phys., Volume 166 (2017) no. 3-4, pp. 680-713 | DOI | MR | Zbl
[13] Some simple conditions for limit theorems to be mixing, Teor. Veroyatnost. i Primenen., Volume 21 (1976) no. 3, pp. 653-660 | Zbl | MR
[14] On the rate of equidistribution of expanding translates of horospheres in , Comment. Math. Helv., Volume 96 (2021) no. 2, pp. 275-337 | DOI | Zbl | MR
[15] Invariant distributions and time averages for horocycle flows, Duke Math. J., Volume 119 (2003) no. 3, pp. 465-526 | DOI | Zbl | MR
[16] The unique ergodicity of the horocycle flow, Recent advances in topological dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, Conn., 1972) (Lect. Notes in Math.), Volume 318, Springer, Berlin, 1973, pp. 95-115 | MR | Zbl
[17] Geodesic flows on manifolds of constant negative curvature, Uspehi Mat. Nauk, Volume 7 (1952) no. 1(47), pp. 118-137 | MR
[18] The entropy of horocycle flows, Dokl. Akad. Nauk SSSR, Volume 136 (1961), pp. 768-770 | MR
[19] Principal structures, Handbook of dynamical systems, Volume 1A, North-Holland, Amsterdam, 2002, pp. 1-203 | Zbl | DOI
[20] Fuchsian groups and transitive horocycles, Duke Math. J., Volume 2 (1936) no. 3, pp. 530-542 | Zbl | MR | DOI
[21] The horocycle flow is mixing of all degrees, Invent. Math., Volume 46 (1978) no. 3, pp. 201-209 | DOI | Zbl | MR
[22] The Gottschalk-Hedlund theorem, Amer. Math. Monthly, Volume 106 (1999) no. 7, pp. 670-672 | DOI | MR | Zbl
[23] Birkhoff sum fluctuations in substitution dynamical systems, Ergodic Theory Dynam. Systems, Volume 39 (2019) no. 7, pp. 1971-2005 | DOI | Zbl | MR
[24] Flows of horocycles on surfaces of constant negative curvature, Uspehi Mat. Nauk, Volume 8 (1953) no. 3(55), pp. 125-126 | MR
[25] The central limit theorem for geodesic flows on -dimensional manifolds of negative curvature, Israel J. Math., Volume 16 (1973), pp. 181-197 | DOI | MR
[26] Factors of horocycle flows, Ergodic Theory Dynam. Systems, Volume 2 (1982) no. 3-4, p. 465-489 (1983) | Zbl | MR | DOI
[27] Rigidity of horocycle flows, Ann. of Math. (2), Volume 115 (1982) no. 3, pp. 597-614 | Zbl | MR | DOI
[28] Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), Volume 118 (1983) no. 2, pp. 277-313 | Zbl | MR | DOI
[29] The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, Volume 7 (1987) no. 2, pp. 267-288 | DOI | Zbl | MR
[30] Quantitative equidistribution of horocycle push-forwards of transverse arcs, Enseign. Math. (2), Volume 66 (2020) no. 1-2, pp. 135-150 | DOI | Zbl | MR
[31] On the deviation of ergodic averages for horocycle flows, J. Modern Dyn., Volume 7 (2013) no. 2, pp. 291-328 | DOI | Zbl | MR
Cité par Sources :





