[Homogénéisation stochastique des fonctionnelles intégrales dégénérées et leurs équations d’Euler-Lagrange]
We prove stochastic homogenization for integral functionals defined on Sobolev spaces, where the stationary, ergodic integrand satisfies a degenerate growth condition of the form for some ) and with a stationary and ergodic diagonal matrix such that its norm and the norm of its inverse satisfy minimal integrability assumptions and is a nonnegative, stationary function with finite first moment. We also consider the convergence when Dirichlet boundary conditions or an obstacle condition are imposed. Assuming the strict convexity and differentiability of with respect to its last variable, we further prove that the homogenized integrand is also strictly convex and differentiable. These properties allow us to show homogenization of the associated Euler-Lagrange equations.
Nous prouvons l’homogénéisation stochastique des fonctionnelles intégrales définies sur des espaces de Sobolev, où l’intégrande stationnaire et ergodique satisfait à une condition de croissance dégénérée de la forme où ), est une matrice diagonale stationnaire et ergodique dont la norme et celle de son inverse satisfont aux hypothèses d’intégrabilité minimale et est une fonction stationnaire et non négative avec un moment d’ordre un fini. Nous considérons également la convergence lorsque des conditions aux limites de Dirichlet ou une condition d’obstacle sont imposées. En supposant la stricte convexité et la différentiabilité de par rapport à sa dernière variable, nous prouvons en outre que l’intégrande homogénéisée est également strictement convexe et différentiable. Ces propriétés nous permettent de montrer l’homogénéisation des équations d’Euler-Lagrange associées.
Accepté le :
Publié le :
Keywords: Stochastic homogenization, integral functionals, degenerate $p$-growth, homogenization of Euler-Lagrange equations
Mots-clés : Homogénéisation stochastique, fonctionnelles intégrales, croissance d’ordre $p$ dégénérée, homogénéisation des équations d’Euler-Lagrange
Ruf, Matthias 1 ; Ruf, Thomas 2
CC-BY 4.0
@article{JEP_2023__10__253_0,
author = {Ruf, Matthias and Ruf, Thomas},
title = {Stochastic homogenization of degenerate integral functionals and {their~Euler-Lagrange} equations},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {253--303},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.218},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.218/}
}
TY - JOUR AU - Ruf, Matthias AU - Ruf, Thomas TI - Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 253 EP - 303 VL - 10 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.218/ DO - 10.5802/jep.218 LA - en ID - JEP_2023__10__253_0 ER -
%0 Journal Article %A Ruf, Matthias %A Ruf, Thomas %T Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 253-303 %V 10 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.218/ %R 10.5802/jep.218 %G en %F JEP_2023__10__253_0
Ruf, Matthias; Ruf, Thomas. Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 253-303. doi: 10.5802/jep.218
[1] Ergodic theorems for superadditive processes, J. reine angew. Math., Volume 323 (1981), pp. 53-67 | Zbl | DOI
[2] Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rational Mech. Anal., Volume 200 (2011) no. 3, pp. 881-943 | Zbl | DOI
[3] New results on -limits of integral functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 31 (2014) no. 1, pp. 185-202 | DOI | Zbl | Numdam
[4] Lipschitz regularity for elliptic equations with random coefficients, Arch. Rational Mech. Anal., Volume 219 (2016) no. 1, pp. 255-348 | DOI | Zbl
[5] Regularity and stochastic homogenization of fully nonlinear equations without uniform ellipticity, Ann. Probab., Volume 42 (2014) no. 6, pp. 2558-2594 | DOI | Zbl
[6] Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations, Volume 11 (2000) no. 4, pp. 333-359 | DOI | Zbl
[7] Remarks on Chacon’s biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989) no. 3, pp. 655-663 | DOI | Zbl
[8] -convergence for beginners, Oxford Lecture Series in Math. and its Applications, 22, Oxford University Press, Oxford, 2002 | DOI
[9] -convergence of free-discontinuity problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 36 (2019) no. 4, pp. 1035-1079 | DOI | Zbl
[10] Some properties of -limits of integral functionals, Ann. Mat. Pura Appl. (4), Volume 122 (1979), pp. 1-60 | DOI | Zbl
[11] Direct methods in the calculus of variations, Applied Mathematical Sciences, 78, Springer, New York, 2008
[12] An introduction to -convergence, Progr. in Nonlinear Differential Equations and their Appl., 8, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI
[13] Integral functionals determined by their minima, Rend. Sem. Mat. Univ. Padova, Volume 76 (1986), pp. 255-267 | Zbl | Numdam
[14] Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. (4), Volume 144 (1986), pp. 347-389 | DOI | Zbl
[15] Nonlinear stochastic homogenization and ergodic theory, J. reine angew. Math., Volume 368 (1986), pp. 28-42 | Zbl
[16] Compactness and convergence of minimum points for a class of nonlinear nonequicoercive functionals, Nonlinear Anal., Volume 15 (1990) no. 4, pp. 363-380 | DOI | Zbl
[17] Lower semicontinuous functionals for Almgren’s multiple valued functions, Ann. Acad. Sci. Fenn. Math., Volume 36 (2011) no. 2, pp. 393-410 | DOI | Zbl
[18] -convergence and stochastic homogenization of degenerate integral functionals in weighted Sobolev spaces, Proc. Roy. Soc. Edinburgh Sect. A (2022) (online first) | DOI
[19] Stochastic homogenization of nonconvex unbounded integral functionals with convex growth, Arch. Rational Mech. Anal., Volume 221 (2016) no. 3, pp. 1511-1584 | DOI | Zbl
[20] Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988
[21] Measure theory and fine properties of functions, Studies in Advanced Math., CRC Press, Boca Raton, FL, 1992
[22] Modern methods in the calculus of variations: spaces, Springer Monographs in Math., Springer, New York, 2007
[23] A -convergence approach to stability of unilateral minimality properties in fracture mechanics and applications, Arch. Rational Mech. Anal., Volume 180 (2006) no. 3, pp. 399-447 | DOI | Zbl
[24] Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | DOI
[25] Ergodic theorems, De Gruyter Studies in Math., 6, Walter de Gruyter & Co., Berlin, 1985 | DOI
[26] Lower semicontinuity in spaces of weakly differentiable functions, Math. Ann., Volume 313 (1999) no. 4, pp. 653-710 | DOI | Zbl
[27] Every superposition operator mapping one Sobolev space into another is continuous, J. Functional Analysis, Volume 33 (1979) no. 2, pp. 217-229 | DOI | Zbl
[28] Stochastic homogenization of nonconvex integral functionals, RAIRO Modél. Math. Anal. Numér., Volume 28 (1994) no. 3, pp. 329-356 | DOI | Zbl | Numdam
[29] Stochastic homogenization of nonconvex discrete energies with degenerate growth, SIAM J. Math. Anal., Volume 49 (2017) no. 3, pp. 1761-1809 | DOI | Zbl
[30] Variational analysis, Grundlehren Math. Wiss., 317, Springer-Verlag, Berlin, 1998 | DOI
[31] Multiparameter subadditive processes, Ann. Probab., Volume 4 (1976) no. 5, pp. 772-782 | DOI | Zbl
Cité par Sources :





