[Involutions birationnelles rigides de et de cubiques lisses de dimension ]
We construct families of birational involutions on or on a smooth cubic threefold which do not fit into a non-trivial elementary relation of Sarkisov links. As a consequence, we construct new homomorphisms from their group of birational transformations, effectively re-proving their non-simplicity. We also prove that these groups admit a free product structure. Finally, we produce automorphisms of these groups that are not generated by inner and field automorphisms.
Nous construisons des familles d’involutions birationnelles sur ou sur une cubique lisse de dimension qui ne s’intègrent pas dans une relation élémentaire non triviale de liens de Sarkisov. En conséquence, nous construisons de nouveaux homomorphismes à partir de leur groupe de transformations birationnelles, redémontrant de manière effective leur non-simplicité. Nous prouvons également que ces groupes admettent une structure de produit libre. Enfin, nous produisons des automorphismes de ces groupes qui ne sont pas engendrés par des automorphismes intérieurs et des automorphismes de corps.
Accepté le :
Publié le :
Keywords: Cremona groups, Sarkisov links, rank $3$ fibrations, elementary relations, cubic 3-folds
Mots-clés : Groupes de Cremona, liens de Sarkisov, fibrations de rang $3$, relations élémentaires, cubiques lisses de dimension $3$
Zikas, Sokratis 1
CC-BY 4.0
@article{JEP_2023__10__233_0,
author = {Zikas, Sokratis},
title = {Rigid birational involutions of $\mathbb{P}^3$ and cubic~threefolds},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {233--252},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.217},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.217/}
}
TY - JOUR
AU - Zikas, Sokratis
TI - Rigid birational involutions of $\mathbb{P}^3$ and cubic threefolds
JO - Journal de l’École polytechnique — Mathématiques
PY - 2023
SP - 233
EP - 252
VL - 10
PB - Ecole polytechnique
UR - https://www.numdam.org/articles/10.5802/jep.217/
DO - 10.5802/jep.217
LA - en
ID - JEP_2023__10__233_0
ER -
%0 Journal Article
%A Zikas, Sokratis
%T Rigid birational involutions of $\mathbb{P}^3$ and cubic threefolds
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 233-252
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.217/
%R 10.5802/jep.217
%G en
%F JEP_2023__10__233_0
Zikas, Sokratis. Rigid birational involutions of $\mathbb{P}^3$ and cubic threefolds. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 233-252. doi: 10.5802/jep.217
[BL12] Weak Fano threefolds obtained by blowing-up a space curve and construction of Sarkisov links, Proc. London Math. Soc. (3), Volume 105 (2012) no. 5, pp. 1047-1075 | DOI | Zbl
[BL15] On birational maps from cubic threefolds, North-West. Eur. J. Math., Volume 1 (2015), pp. 55-84
[BLZ21] Quotients of higher-dimensional Cremona groups, Acta Math., Volume 226 (2021) no. 2, pp. 211-318 | DOI | Zbl
[BY20] Quotients of groups of birational transformations of cubic del Pezzo fibrations, J. Éc. polytech. Math., Volume 7 (2020), pp. 1089-1112 | DOI | Zbl | Numdam
[CL13] Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | DOI | Zbl
[CM13] Towards the classification of weak Fano threefolds with , Cent. Eur. J. Math., Volume 11 (2013) no. 9, pp. 1552-1576 | Zbl | DOI
[Cor95] Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom., Volume 4 (1995) no. 2, pp. 223-254 | Zbl
[Deb01] Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001 | DOI
[Dés06] Sur les automorphismes du groupe de Cremona, Compositio Math., Volume 142 (2006) no. 6, pp. 1459-1478 | Zbl | DOI
[Fuj99] Applications of Kawamata’s positivity theorem, Proc. Japan Acad. Ser. A Math. Sci., Volume 75 (1999) no. 6, pp. 75-79 http://projecteuclid.org/euclid.pja/1148393905 | Zbl
[Har77] Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag, New York-Heidelberg, 1977 | DOI
[HM13] The Sarkisov program, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 389-405 | Zbl | DOI
[Hur92] Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann., Volume 41 (1892) no. 3, pp. 403-442 | Zbl | DOI
[IP99] Fano varieties, Algebraic geometry, V (Encyclopaedia Math. Sci.), Volume 47, Springer, Berlin, 1999, pp. 1-247 | Zbl
[Isk96] Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Uspekhi Mat. Nauk, Volume 51 (1996) no. 4(310), pp. 3-72 | DOI
[Kal13] Relations in the Sarkisov program, Compositio Math., Volume 149 (2013) no. 10, pp. 1685-1709 | Zbl | DOI
[Kaw01] Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math., Volume 145 (2001) no. 1, pp. 105-119 | Zbl | DOI
[Lon16] Non simplicité du groupe de Cremona sur tout corps, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 5, pp. 2021-2046 | Zbl | Numdam | DOI
[LZ20] Signature morphisms from the Cremona group over a non-closed field, J. Eur. Math. Soc. (JEMS), Volume 22 (2020) no. 10, pp. 3133-3173 | Zbl | DOI
[MM64] On the automorphisms of hypersurfaces, J. Math. Kyoto Univ., Volume 3 (1963/64), pp. 347-361 | DOI
[Sch22] Relations in the Cremona group over perfect fields, Ann. Inst. Fourier (Grenoble), Volume 72 (2022) no. 1, pp. 1-42 | Zbl | DOI
[Tzi03] Terminal 3-fold divisorial contractions of a surface to a curve. I, Compositio Math., Volume 139 (2003) no. 3, pp. 239-261 | Zbl | DOI
[UZ21] Continuous automorphisms of Cremona groups, Internat. J. Math., Volume 32 (2021) no. 4, 2150019, 17 pages | Zbl | DOI
[Zik23] Sarkisov links with centres space curves on smooth cubic surfaces, Publ. Mat., Volume 67 (2023) no. 2
Cité par Sources :





