Intersection cohomology of character varieties for punctured Riemann surfaces
[Cohomologie d’intersection des variétés de caractères des surfaces de Riemann épointées]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 141-198

We study intersection cohomology of character varieties for punctured Riemann surfaces with prescribed monodromies around the punctures. Relying on a previous result from Mellit [Mel20a] for semisimple monodromies we compute the intersection cohomology of character varieties with monodromies of any Jordan type. This proves the Poincaré polynomial specialization of a conjecture from Letellier [Let15].

Nous étudions la cohomologie d’intersection des variétés de caractères des surfaces de Riemann épointées, la monodromie autour des points enlevés étant fixée. En nous appuyant sur un résultat de Mellit [Mel20a] pour des monodromies semi-simples, nous calculons la cohomologie d’intersection des variétés de caractères avec des monodromies ayant un type de Jordan quelconque. Ceci prouve la spécialisation au polynôme de Poincaré d’une conjecture de Letellier [Let15].

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.215
Classification : 14M35, 14F43
Keywords: Character varieties, intersection cohomology, parabolic Higgs bundles
Mots-clés : Variétés de caractères, cohomologie d’intersection, fibrés de Higgs paraboliques

Ballandras, Mathieu 1

1 ICMAT, Campus Cantoblanco, UAM C/ Nicolás Cabrera, 13-15, 28049 Madrid, Spain
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__141_0,
     author = {Ballandras, Mathieu},
     title = {Intersection cohomology of character varieties for punctured {Riemann} surfaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {141--198},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.215},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.215/}
}
TY  - JOUR
AU  - Ballandras, Mathieu
TI  - Intersection cohomology of character varieties for punctured Riemann surfaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 141
EP  - 198
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.215/
DO  - 10.5802/jep.215
LA  - en
ID  - JEP_2023__10__141_0
ER  - 
%0 Journal Article
%A Ballandras, Mathieu
%T Intersection cohomology of character varieties for punctured Riemann surfaces
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 141-198
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.215/
%R 10.5802/jep.215
%G en
%F JEP_2023__10__141_0
Ballandras, Mathieu. Intersection cohomology of character varieties for punctured Riemann surfaces. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 141-198. doi: 10.5802/jep.215

[AB83] Atiyah, M. F.; Bott, R. The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983) no. 1505, pp. 523-615 | MR | Zbl

[AHS78] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M. Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, Volume 362 (1978) no. 1711, pp. 425-461 | Zbl | MR

[BB04] Biquard, Olivier; Boalch, Philip Wild non-abelian Hodge theory on curves, Compositio Math., Volume 140 (2004) no. 1, p. 179–204 | MR | Zbl | DOI

[BBDG82] Beilinson, A. A.; Bernstein, J.; Deligne, Pierre; Gabber, O. Faisceaux pervers, Astérisque, 100, Société Mathématique de France, Paris, 1982 (ed. 2018)

[BD12] Biswas, Indranil; Dey, Arijit SYZ duality for parabolic Higgs moduli spaces, Nuclear Phys. B, Volume 862 (2012) no. 1, pp. 327-340 | MR | Zbl | DOI

[BGM20] Biquard, Olivier; García-Prada, Oscar; Mundet i Riera, Ignasi Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group, Adv. Math., Volume 372 (2020), 107305, 70 pages | MR | Zbl | DOI

[BH17] Baraglia, David; Hekmati, Pedram Arithmetic of singular character varieties and their E-polynomials, Proc. London Math. Soc. (3), Volume 114 (2017) no. 2, pp. 293-332 | MR | Zbl | DOI

[Biq97] Biquard, Olivier Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse), Ann. Sci. École Norm. Sup. (4), Volume 30 (1997) no. 1, pp. 41-96 | Numdam | Zbl | DOI

[BM83] Borho, W.; MacPherson, R. Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Astérisque), Volume 101, Société Mathématique de France, Paris, 1983 | MR | Numdam | Zbl

[BP16] Boalch, Philip; Paluba, Robert Symmetric cubic surfaces and G 2 character varieties, J. Algebraic Geom., Volume 25 (2016) no. 4, pp. 607-631 | MR | Zbl | DOI

[BW79] Bruce, J. W.; Wall, C. T. C. On the classification of cubic surfaces, J. London Math. Soc. (2), Volume 19 (1979) no. 2, pp. 245-256 | DOI | MR | Zbl

[BY96] Boden, Hans; Yokogawa, Kôji Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves: I, Internat. J. Math., Volume 7 (1996) no. 5, pp. 573-598 | MR | Zbl | DOI

[Cay69] Cayley, Arthur VII. A memoir on cubic surfaces, Philos. Trans. Roy. Soc. London, Volume 159 (1869), pp. 231-326 | DOI

[CB03] Crawley-Boevey, William On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Volume 118 (2003) no. 2, pp. 339-352 | MR | Zbl | DOI

[CB04] Crawley-Boevey, William Indecomposable parabolic bundles and the existence of matrices in prescribed conjugacy class closures with product equal to the identity, Publ. Math. Inst. Hautes Études Sci. (2004) no. 100, pp. 171-207 | MR | Zbl | DOI

[CBS06] Crawley-Boevey, William; Shaw, Peter Multiplicative preprojective algebras, middle convolution and the Deligne–Simpson problem, Adv. Math., Volume 201 (2006) no. 1, pp. 180-208 | MR | Zbl | DOI

[CDDP15] Chuang, Wu-yen; Diaconescu, Duiliu-Emanuel; Donagi, Ron; Pantev, Tony Parabolic refined invariants and Macdonald polynomials, Comm. Math. Phys., Volume 335 (2015) no. 3, pp. 1323-1379 | MR | Zbl | DOI

[CDP14] Chuang, W. Y.; Diaconescu, D. E.; Pan, G. BPS states and the P=W conjecture, Moduli spaces (London Math. Soc. Lecture Note Ser.), Volume 411, Cambridge Univ. Press, Cambridge, 2014, pp. 132-150 | MR | Zbl | DOI

[CL09] Cantat, Serge; Loray, Frank Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 7, pp. 2927-2978 http://aif.cedram.org/... | DOI | Numdam | Zbl

[CL16] Chaudouard, Pierre-Henri; Laumon, Gérard Sur le comptage des fibrés de Hitchin nilpotents, J. Inst. Math. Jussieu, Volume 15 (2016) no. 1, p. 91–164 | Zbl | DOI

[Cor88] Corlette, Kevin Flat G-bundles with canonical metrics, J. Differential Geom., Volume 28 (1988) no. 3, pp. 361-382 | MR | Zbl | DOI

[CRV18] Carlsson, Erik; Rodriguez Villegas, Fernando Vertex operators and character varieties, Adv. Math., Volume 330 (2018), pp. 38-60 | MR | Zbl | DOI

[dCHM12] de Cataldo, Mark; Hausel, Tamás; Migliorini, Luca Topology of Hitchin systems and Hodge theory of character varieties: the case A 1 , Ann. of Math. (2), Volume 175 (2012) no. 3, pp. 1329-1407 | DOI | MR | Zbl

[dCMS22] de Cataldo, Mark; Maulik, Davesh; Shen, Junliang Hitchin fibrations, abelian surfaces, and the P=W conjecture, J. Amer. Math. Soc., Volume 35 (2022) no. 3, pp. 911-953 | MR | Zbl | DOI

[DDP18] Diaconescu, Duiliu-Emanuel; Donagi, Ron; Pantev, Tony BPS states, torus links and wild character varieties, Comm. Math. Phys., Volume 359 (2018) no. 3, pp. 1027-1078 | MR | Zbl | DOI

[Del70] Deligne, Pierre Équations différentielles à points singuliers réguliers, Lect. Notes in Math., 163, Springer-Verlag, Berlin, Heidelberg, New York, 1970 | DOI

[Del71] Deligne, Pierre Théorie de Hodge: II, Publ. Math. Inst. Hautes Études Sci., Volume 40 (1971), pp. 5-57 | Numdam | DOI | Zbl

[Dia18] Diaconescu, Duiliu-Emanuel Local curves, wild character varieties, and degenerations, Commun. Number Theory Phys., Volume 12 (2018) no. 3, pp. 491-542 | MR | Zbl | DOI

[Don87] Donaldson, S. K. Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 127-131 | MR | Zbl | DOI

[EOR04] Etingof, Pavel; Oblomkov, Alexei; Rains, Eric Generalized double affine Hecke algebras of rank 1 and quantized Del Pezzo surfaces, Adv. Math., Volume 212 (2004) no. 2, pp. 749-796 | MR | Zbl | DOI

[Fel21] Felisetti, Camilla Intersection cohomology of the moduli space of Higgs bundles on a genus 2 curve, J. Inst. Math. Jussieu (2021) (50 p., online) | DOI

[FK97] Fricke; Klein Vorlesungen über die Theorie der automorphen Funktionen, B. G. Teubner, Leipzig, 1897

[FM22] Felisetti, Camilla; Mauri, Mirko P=W conjectures for character varieties with symplectic resolution, J. Éc. polytech. Math., Volume 9 (2022), pp. 853-905 | Zbl | MR | DOI

[FSS18] Fedorov, Roman; Soibelman, Alexander; Soibelman, Yan Motivic classes of moduli of Higgs bundles and moduli of bundles with connections, Commun. Number Theory Phys., Volume 12 (2018) no. 4, pp. 687-766 | MR | Zbl | DOI

[FSS20] Fedorov, Roman; Soibelman, Alexander; Soibelman, Yan Motivic Donaldson-Thomas invariants of parabolic Higgs bundles and parabolic connections on a curve, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), 070, 49 pages | MR | Zbl | DOI

[GM83] Goresky, Mark; MacPherson, Robert Intersection homology. II, Invent. Math., Volume 72 (1983) no. 1, pp. 77-129 | MR | Zbl | DOI

[GO19] Gothen, Peter; Oliveira, André G. Topological mirror symmetry for parabolic Higgs bundles, J. Geom. Phys., Volume 137 (2019), pp. 7-34 | MR | Zbl | DOI

[Gol09] Goldman, William M. Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, Handbook of Teichmüller theory. Vol. II (IRMA Lect. Math. Theor. Phys.), Volume 13, European Mathematical Society, Zürich, 2009, pp. 611-684 | MR | Zbl | DOI

[Got94] Gothen, Peter The Betti numbers of the moduli space of rank 3 Higgs bundles on a Riemann surface, Internat. J. Math., Volume 5 (1994), pp. 861-875 | MR | Zbl | DOI

[GP18] González-Prieto, Ángel Topological quantum field theories for character varieties, Ph. D. Thesis, Universidad Complutense de Madrid (2018)

[GPGM07] García-Prada, Oscar; Gothen, Peter; Muñoz, Vicente Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, Mem. Amer. Math. Soc., 187, no. 879, American Mathematical Society, Providence, RI, 2007 | DOI

[GPH13] García-Prada, Oscar; Heinloth, Jochen The y-genus of the moduli space of PGL n -Higgs bundles on a curve (for degree coprime to n), Duke Math. J., Volume 162 (2013) no. 14, pp. 2731-2749 | MR | Zbl | DOI

[GPHS14] García-Prada, Oscar; Heinloth, Jochen; Schmitt, Alexander On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 12, pp. 2617-2668 | MR | Zbl | DOI

[GWZ20] Groechenig, Michael; Wyss, Dimitri; Ziegler, Paul Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration, Invent. Math., Volume 221 (2020) no. 2, pp. 505-596 | MR | Zbl | DOI

[Har77] Hartshorne, R. Algebraic Geometry, Graduate Texts in Math., Springer, New York, 1977 | DOI

[Hau98] Hausel, Tamás Compactification of moduli of Higgs bundles, J. reine angew. Math., Volume 503 (1998), pp. 169-192 | Zbl | MR | DOI

[Hau05] Hausel, Tamás Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve, Geometric methods in algebra and number theory (Progress in Math.), Volume 235, Birkhäuser Boston, Boston, MA, 2005, pp. 193-217 | MR | Zbl | DOI

[Hit87] Hitchin, N. J. The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 59-126 | MR | Zbl | DOI

[HKLR87] Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M. HyperKähler metrics and supersymmetry, Comm. Math. Phys., Volume 108 (1987), pp. 535-589 | Zbl | DOI

[HLRV11] Hausel, Tamás; Letellier, Emmanuel; Rodriguez Villegas, Fernando Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J., Volume 160 (2011) no. 2, pp. 323-400 | MR | Zbl | DOI

[HRV08] Hausel, Tamás; Rodriguez Villegas, Fernando Mixed Hodge polynomials of character varieties, Invent. Math., Volume 174 (2008) no. 3, pp. 555-624 | MR | Zbl | DOI

[HT01] Hausel, Tamás; Thaddeus, Michael Examples of mirror partners arising from integrable systems, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001) no. 4, pp. 313-318 | Zbl | MR | DOI

[HT03a] Hausel, Tamás; Thaddeus, Michael Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math., Volume 153 (2003) no. 1, pp. 197-229 | MR | Zbl | DOI

[HT03b] Hausel, Tamás; Thaddeus, Michael Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles, J. Amer. Math. Soc., Volume 16 (2003) no. 2, pp. 303-329 | MR | Zbl | DOI

[HT04] Hausel, Tamás; Thaddeus, Michael Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles, Proc. London Math. Soc. (3), Volume 88 (2004) no. 3, p. 632–658 | MR | Zbl | DOI

[Hun96] Hunt, B. The geometry of some special arithmetic quotients, Lect. Notes in Math., 1637, Springer-Verlag, Berlin, 1996 | DOI

[IIS06a] Inaba, Michi-aki; Iwasaki, Katsunori; Saito, Masa-Hiko Dynamics of the sixth Painlevé equation, Théories asymptotiques et équations de Painlevé (Sémin. Congr.), Volume 14, Société Mathématique de France, Paris, 2006, pp. 103-167 | Zbl

[IIS06b] Inaba, Michi-aki; Iwasaki, Katsunori; Saito, Masa-Hiko Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI, Part I, Publ. RIMS, Kyoto Univ., Volume 42 (2006) no. 4, pp. 987-1089 | Zbl | DOI

[IIS06c] Inaba, Michi-aki; Iwasaki, Katsunori; Saito, Masa-Hiko Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI, Part II, Moduli spaces and arithmetic geometry (Adv. Stud. Pure Math.), Volume 45, Math. Soc. Japan, Tokyo, 2006, pp. 387-432 | Zbl | DOI

[Ina13] Inaba, Michi-aki Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence, J. Algebraic Geom., Volume 22 (2013) no. 3, pp. 407-480 | MR | Zbl | DOI

[Kat96] Katz, Nicholas M. Rigid local systems, Ann. of Math. studies, 139, Princeton University Press, Princeton, NJ, 1996 | MR | DOI

[Kon93] Konno, Hiroshi Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface, J. Math. Soc. Japan, Volume 45 (1993) no. 2, pp. 253-276 | MR | Zbl | DOI

[Kos04] Kostov, Vladimir Petrov The Deligne–Simpson problem—a survey, J. Algebra, Volume 281 (2004) no. 1, pp. 83-108 | MR | Zbl | DOI

[KP81] Kraft, Hanspeter; Procesi, Claudio Minimal singularities in GL n , Invent. Math., Volume 62 (1981) no. 3, pp. 503-515 | MR | Zbl | DOI

[Kur65] Kuranishi, M. New proof for the existence of locally complete families of complex structures, Proceedings of the conference on complex analysis (Aeppli, Alfred; Calabi, Eugenio; Röhrl, Helmut, eds.), Springer, Berlin, Heidelberg, 1965, pp. 142-154 | DOI

[Let13] Letellier, Emmanuel Quiver varieties and the character ring of general linear groups over finite fields, J. Eur. Math. Soc. (JEMS), Volume 15 (2013) no. 4, pp. 1375-1455 | MR | Zbl | DOI

[Let15] Letellier, Emmanuel Character varieties with Zariski closures of GL n conjugacy classes at punctures, Selecta Math. (N.S.), Volume 21 (2015) no. 1, pp. 293-344 | MR | Zbl | DOI

[LM10] Logares, Marina; Martens, Johan Moduli of parabolic Higgs bundles and Atiyah algebroids, J. reine angew. Math., Volume 649 (2010), pp. 89-116 | MR | Zbl | DOI

[LM14] Logares, Marina; Muñoz, Vicente Hodge polynomials of the SL(2,)-character variety of an elliptic curve with two marked points, Internat. J. Math., Volume 25 (2014) no. 14, p. 1450125, 22 | Zbl | MR | DOI

[LMN13] Logares, Marina; Muñoz, Vicente; Newstead, P. E. Hodge polynomials of SL(2,)-character varieties for curves of small genus, Rev. Mat. Univ. Complut. Madrid, Volume 26 (2013) no. 2, pp. 635-703 | MR | Zbl | DOI

[Lus81] Lusztig, G. Green polynomials and singularities of unipotent classes, Adv. Math., Volume 42 (1981) no. 2, pp. 169-178 | MR | Zbl | DOI

[Lus84] Lusztig, G. Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984) no. 2, pp. 205-272 | MR | Zbl | DOI

[Lus85] Lusztig, G. Character sheaves I, Adv. Math., Volume 56 (1985) no. 3, pp. 193-237 | MR | Zbl | DOI

[Lus86] Lusztig, G. On the character values of finite Chevalley groups at unipotent elements, J. Algebra, Volume 104 (1986) no. 1, pp. 146-194 | DOI | MR | Zbl

[LW21] Loeser, François; Wyss, Dimitri Motivic integration on the Hitchin fibration, Algebraic Geom., Volume 8 (2021) no. 2, pp. 196-230 | DOI | MR | Zbl

[Mac15] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015

[Mar17] Martínez, Javier E-polynomials of PGL(2,)-character varieties of surface groups, 2017 | arXiv

[Mau21a] Mauri, Mirko Intersection cohomology of rank 2 character varieties of surface groups, J. Inst. Math. Jussieu (2021) (40 p., online) | DOI

[Mau21b] Mauri, Mirko Topological mirror symmetry for rank two character varieties of surface groups, Abh. Math. Sem. Univ. Hamburg, Volume 91 (2021) no. 2, pp. 297-303 | DOI | MR | Zbl

[Mel19] Mellit, Anton Cell decompositions of character varieties, 2019 | arXiv

[Mel20a] Mellit, Anton Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers, Ann. of Math. (2), Volume 192 (2020) no. 1, pp. 165-228 | DOI | Zbl

[Mel20b] Mellit, Anton Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures), Invent. Math., Volume 221 (2020) no. 1, pp. 301-327 | DOI | Zbl

[Mer15] Mereb, M. On the E-polynomials of a family of character varieties, Math. Ann., Volume 363 (2015) no. 3-4, pp. 857-892 | DOI | MR | Zbl

[MH74] Manin, Yu. I.; Hazewinkel, M. Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, American Elsevier Publishing Co., Inc., New York, 1974

[MM16a] Martínez, Javier; Muñoz, Vicente E-polynomials of SL(2,)-character varieties of complex curves of genus 3, Volume 53, 2016 no. 3, pp. 645-681 http://projecteuclid.org/euclid.ojm/1470413983 | MR | Zbl

[MM16b] Martínez, Javier; Muñoz, Vicente E-polynomials of the SL(2,)-character varieties of surface groups, Internat. Math. Res. Notices (2016) no. 3, pp. 926-961 | DOI | MR | Zbl

[Moz12] Mozgovoy, Sergey Solutions of the motivic ADHM recursion formula, Internat. Math. Res. Notices (2012) no. 18, pp. 4218-4244 | DOI | MR | Zbl

[MS80] Mehta, V.; Seshadri, C. Moduli of vector bundles on curves with parabolic structures, Math. Ann., Volume 248 (1980) no. 3, pp. 205-239 | DOI | MR | Zbl

[MS14] Mozgovoy, Sergey; Schiffmann, Olivier Counting Higgs bundles, 2014 | arXiv

[MS20] Mozgovoy, Sergey; Schiffmann, Olivier Counting Higgs bundles and type A quiver bundles, Compositio Math., Volume 156 (2020) no. 4, p. 744–769 | DOI | MR | Zbl

[Nak96] Nakajima, Hiraku Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 179, Dekker, New York, 1996, pp. 199-208 | Zbl

[Nak98] Nakajima, Hiraku Quiver varieties and Kac-Moody algebras, Duke Math. J., Volume 91 (1998) no. 3, pp. 515-560 | DOI | MR | Zbl

[Nak01] Nakajima, Hiraku Quiver varieties and finite dimensional representations of quantum affine algebras, J. Amer. Math. Soc., Volume 14 (2001) no. 1, pp. 145-238 | DOI | Zbl | MR

[NS65] Narasimhan, M. S.; Seshadri, C. S. Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2), Volume 82 (1965) no. 3, pp. 540-567 | DOI | MR | Zbl

[Pau96] Pauly, Christian Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J., Volume 84 (1996) no. 1, pp. 217-235 | DOI | Zbl

[Sai86] Saito, Morihiko Mixed Hodge modules, Proc. Japan Acad. Ser. A Math. Sci., Volume 62 (1986) no. 9, pp. 360-363 | DOI | Zbl | MR

[Sch16] Schiffmann, Olivier Indecomposable vector bundles and stable Higgs bundles over smooth projective curves, Ann. of Math. (2), Volume 183 (2016) no. 1, pp. 297-362 | DOI | MR | Zbl

[Shm12] Shmelkin, D. A. Some remarks on Nakajima’s quiver varieties of type A, Geometric methods in representation theory. II (Sémin. Congr.), Volume 24, Société Mathématique de France, Paris, 2012, pp. 419-427 | MR | Zbl

[Sim88] Simpson, Carlos Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988) no. 4, pp. 867-918 | DOI | MR | Zbl

[Sim90] Simpson, Carlos Harmonic bundles on noncompact curves, J. Amer. Math. Soc., Volume 3 (1990) no. 3, pp. 713-770 | DOI | MR | Zbl

[Sim92] Simpson, Carlos Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci., Volume 75 (1992), pp. 5-95 | Zbl | Numdam | DOI

[Sim94a] Simpson, Carlos Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. Inst. Hautes Études Sci., Volume 79 (1994), pp. 47-129 | DOI | Numdam | Zbl

[Sim94b] Simpson, Carlos Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math. Inst. Hautes Études Sci., Volume 80 (1994), pp. 5-79 | Numdam | DOI

[Sim09] Simpson, Carlos Katz’s middle convolution algorithm, Pure Appl. Math. Q, Volume 5 (2009), pp. 781-852 | DOI | Zbl | MR

[Sim16] Simpson, Carlos The dual boundary complex of the SL 2 character variety of a punctured sphere, Ann. Fac. Sci. Toulouse Math. (6), Volume 25 (2016) no. 2-3, pp. 317-361 https://afst.centre-mersenne.org/... | DOI | Zbl

[Soi16] Soibelman, Alexander Parabolic bundles over the projective line and the Deligne–Simpson problems, Q. J. Math., Volume 67 (2016) no. 1, pp. 75-108 | DOI | MR | Zbl

[Soi18] Soibelman, Alexander The very good property for parabolic vector bundles over curves, Lett. Math. Phys., Volume 108 (2018) no. 6, pp. 1551-1561 | DOI | MR | Zbl

[Spr76] Springer, T. Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 | DOI | MR | Zbl

[ST22] Schedler, Travis; Tirelli, Andrea Symplectic resolutions for multiplicative quiver varieties and character varieties for punctured surfaces, Representation theory and algebraic geometry, Springer, Cham, 2022, pp. 393-459 | DOI | Zbl

[Vog89] Vogt, H. Sur les invariants fondamentaux des équations différentielles linéaires du second ordre, Ann. Sci. École Norm. Sup., Volume 6 (1889), pp. 3-71 | DOI | Numdam | Zbl

[Yam08] Yamakawa, Daisuke Geometry of multiplicative preprojective algebra, Internat. Math. Res. Papers (2008), rpn008, 77 pages | DOI | MR | Zbl

[Yok93] Yokogawa, Kôji Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves, J. Math. Kyoto Univ., Volume 33 (1993) no. 2, pp. 451-504 | DOI | MR | Zbl

Cité par Sources :