Symplectic Homogenization
[Homogénéisation symplectique]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 67-140

Let H(q,p) be a Hamiltonian on T * T n . Under suitable assumptions on H, we show that the sequence (H k ) k1 defined by H k (q,p)=H(kq,p) converges in the γ-topology—defined in [Vit92]—to an integrable continuous Hamiltonian H ¯(p). This is extended to the case of non-autonomous Hamiltonians, and the more general setting in which only some of the variables are homogenized: we consider the sequence H(kx,y,q,p) and prove it has a γ-limit H ¯(y,q,p), thus yielding an “effective Hamiltonian”. The goal of this paper is to prove convergence of the above sequences, state the first properties of the homogenization operator, and give some applications to solutions of Hamilton-Jacobi equations, construction of quasi-states, etc. We also prove that when H is convex in p, the function H ¯ coincides with Mather’s α function defined in [Mat91] and associated to the Legendre dual of H. This gives a new proof—in the torus case—of its symplectic invariance first discovered by P. Bernard in [Ber07].

Soit H(q,p) un hamiltonien défini sur T * T n . Sous des hypothèses convenables, on montre que la suite (H k ) k1 définie par H k (q,p)=H(kq,p) converge pour la topologie γ, définie dans [Vit92], vers un hamiltonien intégrable H ¯(p). Ceci s’étend au cas de hamiltoniens non-autonomes, et au cas où seulement certaines variables sont homogénéisées : par exemple la suite H k (kx,y,p x ,p y ) qui dans ce cas aura une limite H ¯(y,p x ,p y ), qui est un « hamiltonien effectif ». Le but de cet article est de démontrer la convergence de ces suites, ainsi que les premières propriétés de l’opérateur d’homogénéisation et d’en donner des applications aux solutions d’équations de Hamilton-Jacobi, aux quasi-états symplectiques, etc. On démontre aussi que lorsque H est convexe en p, la fonction H ¯ coïncide avec la fonction α de Mather (cf. [Mat91]) associée au dual de Legendre de H. Cela redémontre, dans le cas du tore, que cette fonction est symplectiquement invariante, comme l’avait démontré P. Bernard ([Ber07]) dans le cas général.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.214
Classification : 37J05, 53D35, 35F20, 49L25, 37J40, 37J50
Keywords: Homogenization, symplectic topology, Hamiltonian flow, Hamilton-Jacobi equation, variational solutions
Mots-clés : Flot hamiltonien, homogénéisation, Hamilton-Jacobi, symplectique

Viterbo, Claude 1

1 DMA, UMR 8553 du CNRS, École Normale Supérieure, PSL University 45 Rue d’Ulm, 75230 Paris Cedex 05, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__67_0,
     author = {Viterbo, Claude},
     title = {Symplectic {Homogenization}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {67--140},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.214},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.214/}
}
TY  - JOUR
AU  - Viterbo, Claude
TI  - Symplectic Homogenization
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 67
EP  - 140
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.214/
DO  - 10.5802/jep.214
LA  - en
ID  - JEP_2023__10__67_0
ER  - 
%0 Journal Article
%A Viterbo, Claude
%T Symplectic Homogenization
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 67-140
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.214/
%R 10.5802/jep.214
%G en
%F JEP_2023__10__67_0
Viterbo, Claude. Symplectic Homogenization. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 67-140. doi: 10.5802/jep.214

[Aar91] Aarnes, Johan F. Quasi-states and quasi-measures, Adv. Math., Volume 86 (1991) no. 1, pp. 41-67 | MR | Zbl | DOI

[AB84] Acerbi, Emilio; Buttazzo, Giuseppe On the limits of periodic Riemannian metrics, J. Analyse Math., Volume 43 (1983/84), pp. 183-201 | MR | Zbl | DOI

[AB02] Alvarez, Olivier; Bardi, Martino Viscosity solutions methods for singular perturbations in deterministic and stochastic control, SIAM J. Control Optim., Volume 40 (2001/02) no. 4, pp. 1159-1188 | MR | Zbl | DOI

[AB03] Alvarez, Olivier; Bardi, Martino Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result, Arch. Rational Mech. Anal., Volume 170 (2003) no. 1, pp. 17-61 | MR | Zbl | DOI

[Ban80] Bangert, Victor Closed geodesics on complete surfaces, Math. Ann., Volume 251 (1980) no. 1, pp. 83-96 | MR | Zbl | DOI

[Bar94] Barles, Guy Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications, 17, Springer-Verlag, Paris, 1994

[BCBA99] Boudaoud, A.; Couder, Y.; Ben Amar, M. A self-adaptative oscillator, European Phys. J. B, Volume 9 (1999), pp. 159-165 | DOI

[BCD97] Bardi, Martino; Capuzzo-Dolcetta, Italo Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997 | DOI

[Ben88] Benci, V. (1988) (Talk at the Workshop of Symplectic Geometry, M.S.R.I., Berkeley, CA, USA)

[Ber03] Bernard, Patrick The action spectrum near positive definite invariant tori, Bull. Soc. math. France, Volume 131 (2003) no. 4, pp. 603-616 | MR | Numdam | Zbl | DOI

[Ber07] Bernard, Patrick Symplectic aspects of Mather theory, Duke Math. J., Volume 136 (2007) no. 3, pp. 401-420 | MR | Zbl | DOI

[Bir27] Birkhoff, George D. Dynamical systems, Amer. Math. Soc. Colloquium Publ., IX, American Mathematical Society, Providence, R.I., 1927 (reprinted 1966)

[Bis19] Bisgaard, Mads R. Mather theory and symplectic rigidity, J. Modern Dyn., Volume 15 (2019), pp. 165-207 | MR | Zbl | DOI

[BM58] Bogoliubov, N. N.; Mitropolski, Y. A. Asymptotic methods in the theory of nonlinear oscillations, Fizmatlit, Moscow, 1958 (English transl.: Gordon and Breach, New York, 1964)

[Bou02] Boudaoud, A. De la corde au film de savon: de l’auto-adaptation dans les systèmes vibrants, Images de la Physique (2002), pp. 78-83 (may be retrieved from https://www.imo.universite-paris-saclay.fr/~claude.viterbo/Imphy.pdf)

[Bra02] Braides, Andrea Γ-convergence for beginners, Oxford Lecture Series in Math. and its Applications, 22, Oxford University Press, Oxford, 2002, xii+218 pages | DOI

[Bru91] Brunella, Marco On a theorem of Sikorav, Enseign. Math. (2), Volume 37 (1991) no. 1-2, pp. 83-87 | MR | Zbl

[BS13] Buhovsky, Lev; Seyfaddini, Sobhan Uniqueness of generating Hamiltonians for topological Hamiltonian flows, J. Symplectic Geom., Volume 11 (2013) no. 1, pp. 37-52 http://projecteuclid.org/euclid.jsg/1362146732 | DOI | MR | Zbl

[Cha84] Chaperon, Marc Une idée du type ‘géodésiques brisées’ pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math., Volume 298 (1984) no. 13, pp. 293-296 | Zbl

[Cha91] Chaperon, Marc Lois de conservation et géométrie symplectique, C. R. Acad. Sci. Paris Sér. I Math., Volume 312 (1991) no. 4, pp. 345-348 | MR | Zbl

[Che96] Chekanov, Yu. V. Critical points of quasifunctions, and generating families of Legendrian manifolds, Funktsional. Anal. i Prilozhen., Volume 30 (1996) no. 2, p. 56-69, 96 | DOI

[CIPP98] Contreras, G.; Iturriaga, R.; Paternain, G. P.; Paternain, M. Lagrangian graphs, minimizing measures and Mañé’s critical values, Geom. Funct. Anal., Volume 8 (1998) no. 5, pp. 788-809 | Zbl | DOI

[CL83] Crandall, Michael G.; Lions, Pierre-Louis Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., Volume 277 (1983) no. 1, pp. 1-42 | MR | Zbl | DOI

[Con96] Concordel, Marie C. Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalues and variational formula, Indiana Univ. Math. J., Volume 45 (1996) no. 4, pp. 1095-1117 | MR | Zbl | DOI

[CV08] Cardin, Franco; Viterbo, Claude Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., Volume 144 (2008) no. 2, pp. 235-284 | MR | Zbl | DOI

[DG75] De Giorgi, Ennio Sulla convergenza di alcune successioni d’integrali del tipo dell’area, Rend. Mat. (6), Volume 8 (1975), pp. 277-294 | MR | Zbl

[DGF75] De Giorgi, Ennio; Franzoni, Tullio Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), Volume 58 (1975) no. 6, pp. 842-850 | MR | Zbl

[DM93] Dal Maso, Gianni An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Appl., 8, Birkhäuser Boston, Inc., Boston, MA, 1993, xiv+340 pages | DOI

[DMGZ94] De Marco, Giuseppe; Gorni, Gianluca; Zampieri, Gaetano Global inversion of functions: an introduction, NoDEA Nonlinear Differential Equations Appl., Volume 1 (1994) no. 3, pp. 229-248 | MR | Zbl | DOI

[Eli91] Eliashberg, Yakov New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc., Volume 4 (1991) no. 3, pp. 513-520 | MR | Zbl | DOI

[EP06] Entov, Michael; Polterovich, Leonid Quasi-states and symplectic intersections, Comment. Math. Helv., Volume 81 (2006) no. 1, pp. 75-99 | MR | Zbl | DOI

[Eva89] Evans, Lawrence C. The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989) no. 3-4, pp. 359-375 | DOI | MR | Zbl

[Fat97] Fathi, Albert Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997) no. 9, pp. 1043-1046 | Zbl | DOI

[Fat98] Fathi, Albert Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., Volume 327 (1998) no. 3, pp. 267-270 | MR | Zbl | DOI

[Fat08] Fathi, Albert Weak KAM theorem in Lagrangian dynamics, 2008 (Version 10, available from https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf)

[Ger31] Geršgorin, S. Über die Abgrenzung der Eigenwerte einer Matrix, Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na., Volume 6 (1931), pp. 749-754 | Zbl

[Gro99] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces, Progress in Math., 152, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pages Based on the 1981 French original (3rd ed. 2007)

[GV22] Guillermou, S.; Vichery, N. Viterbo’s spectral bound conjecture for homogeneous spaces, 2022 | arXiv

[Had06] Hadamard, J. Sur les transformations ponctuelles, Bull. Soc. math. France, Volume 34 (1906), pp. 71-84 | DOI | MR | Numdam | Zbl

[HLS15] Humilière, Vincent; Leclercq, Rémi; Seyfaddini, Sobhan New energy-capacity-type inequalities and uniqueness of continuous Hamiltonians, Comment. Math. Helv., Volume 90 (2015) no. 1, pp. 1-21 | DOI | MR | Zbl

[Hum08a] Humilière, Vincent Continuité en topologie symplectique, Ph. D. Thesis, École polytechnique (2008) (https://www.theses.fr/2008EPXX0005)

[Hum08b] Humilière, Vincent On some completions of the space of Hamiltonian maps, Bull. Soc. math. France, Volume 136 (2008) no. 3, pp. 373-404 | DOI | MR | Numdam | Zbl

[Lau92] Laudenbach, François On the Thom-Smale complex, An extension of a theorem by Cheeger and Müller (Astérisque), Volume 205, Société Mathématique de France, Paris, 1992, pp. 219-233 | Numdam

[LPV87] Lions, P.-L.; Papanicolaou, G. C.; Varadhan, S. R. S. Homogenization of Hamilton-Jacobi equations, 1987 (Unpublished preprint, available from http://localwww.math.unipd.it/~bardi/didattica/Nonlinear_PDE_%20homogenization_Dott_%202011/LPV87.pdf)

[LS85] Laudenbach, François; Sikorav, Jean-Claude Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math., Volume 82 (1985) no. 2, pp. 349-357 | DOI | Zbl

[Mat91] Mather, John N. Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991) no. 2, pp. 169-207 | DOI | MR | Zbl

[Mon42] Mondrian, P. New-York City, 1942 (Centre Pompidou, MNAM-CCI, Paris, https://www.centrepompidou.fr/cpv/resource/c5pRBL/rdyjdr9)

[MVZ12] Monzner, Alexandra; Vichery, Nicolas; Zapolsky, Frol Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization, J. Modern Dyn., Volume 6 (2012) no. 2, pp. 205-249 | DOI | MR | Zbl

[MZ11] Monzner, Alexandra; Zapolsky, Frol A comparison of symplectic homogenization and Calabi quasi-states, J. Topol. Anal., Volume 3 (2011) no. 3, pp. 243-263 | DOI | MR | Zbl

[Oh05] Oh, Yong-Geun Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, The breadth of symplectic and Poisson geometry (Progress in Math.), Volume 232, Birkhäuser Boston, Boston, MA, 2005, pp. 525-570 | DOI | MR | Zbl

[OV95] Ottolenghi, A.; Viterbo, Claude Solutions généralisées pour l’équation de Hamilton-Jacobi dans le cas d’évolution, 1995 (Preprint, available from http://www.math.ens.fr/~viterbo/Ottolenghi-Viterbo.pdf)

[Roo17] Roos, Valentine Solutions variationnelles et solutions de viscosité, Ph. D. Thesis, Université de Paris-Dauphine (2017) (http://www.theses.fr/2017PSLED023 and https://basepub.dauphine.fr/handle/123456789/16992)

[Sch00] Schwarz, Matthias On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., Volume 193 (2000) no. 2, pp. 419-461 | DOI | MR | Zbl

[Sey12] Seyfaddini, Sobhan Descent and C 0 -rigidity of spectral invariants on monotone symplectic manifolds, J. Topol. Anal., Volume 4 (2012) no. 4, pp. 481-498 | DOI | MR | Zbl

[She22] Shelukhin, E. Symplectic cohomology and a conjecture of Viterbo, Geom. Funct. Anal. (2022) (published online, doi:10.1007/s00039-022-00619-2) | DOI

[Sik89] Sikorav, Jean-Claude Rigidité symplectique dans le cotangent de T n , Duke Math. J., Volume 59 (1989) no. 3, pp. 759-763 | DOI | MR | Zbl

[Sik90] Sikorav, Jean-Claude (1990) (Talk given at Paris 7 seminar)

[SV85] Sanders, J. A.; Verhulst, F. Averaging methods in nonlinear dynamical systems, Applied Math. Sciences, 59, Springer-Verlag, New York, 1985, x+247 pages | DOI

[SV10] Sorrentino, Alfonso; Viterbo, Claude Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms, Geom. Topol., Volume 14 (2010) no. 4, pp. 2383-2403 | DOI | MR | Zbl

[Thé99] Théret, David A complete proof of Viterbo’s uniqueness theorem on generating functions, Topology Appl., Volume 96 (1999) no. 3, pp. 249-266 | MR | Zbl | DOI

[Tra94] Traynor, Lisa Symplectic homology via generating functions, Geom. Funct. Anal., Volume 4 (1994) no. 6, pp. 718-748 | MR | Zbl | DOI

[Var04] Varga, Richard S. Geršgorin and his circles, Springer Series in Computational Math., 36, Springer-Verlag, Berlin, 2004 | DOI

[Vit92] Viterbo, Claude Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | MR | Zbl | DOI

[Vit95] Viterbo, Claude Solutions d’équations d’Hamilton-Jacobi et géométrie symplectique, Séminaire X-EDP, École polytechnique, Palaiseau, 1995 (http://www.numdam.org/item/SEDP_1995-1996____A22_0/)

[Vit06a] Viterbo, Claude On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Internat. Math. Res. Notices (2006), 34028, 9 pages Erratum: Ibid., article no. 38784 (4 pages) | MR | Zbl | DOI

[Vit06b] Viterbo, Claude Symplectic topology and Hamilton-Jacobi equations, Morse theoretic methods in nonlinear analysis and in symplectic topology (NATO Sci. Ser. II Math. Phys. Chem.), Volume 217, Springer, Dordrecht, 2006, pp. 439-459 | MR | Zbl | DOI

[Vit18] Viterbo, Claude Non-convex Mather theory, 2018 (submitted to Duke Math. J.) | arXiv

[Vit21] Viterbo, Claude Stochastic homogenization of variational solutions of Hamilton-Jacobi equations, 2021 | arXiv

[Vit22] Viterbo, Claude Inverse reduction inequalities for spectral numbers and applications, 2022 | arXiv

[Wei13] Wei, Qiaoling Solutions de viscosité des équations de Hamilton-Jacobi et minmax itérés, Ph. D. Thesis, Université de Paris 7 (2013) (https://tel.archives-ouvertes.fr/tel-00963780)

[Zhu96] Zhukovskaya, T. Metamorphoses of the Chaperon-Sikorav weak solutions of Hamilton-Jacobi equations, J. Math. Sci., Volume 82 (1996) no. 5, pp. 3737-3746 | MR | Zbl | DOI

Cité par Sources :