[Homogénéisation symplectique]
Let be a Hamiltonian on . Under suitable assumptions on , we show that the sequence defined by converges in the -topology—defined in [Vit92]—to an integrable continuous Hamiltonian . This is extended to the case of non-autonomous Hamiltonians, and the more general setting in which only some of the variables are homogenized: we consider the sequence and prove it has a -limit , thus yielding an “effective Hamiltonian”. The goal of this paper is to prove convergence of the above sequences, state the first properties of the homogenization operator, and give some applications to solutions of Hamilton-Jacobi equations, construction of quasi-states, etc. We also prove that when is convex in , the function coincides with Mather’s function defined in [Mat91] and associated to the Legendre dual of . This gives a new proof—in the torus case—of its symplectic invariance first discovered by P. Bernard in [Ber07].
Soit un hamiltonien défini sur . Sous des hypothèses convenables, on montre que la suite définie par converge pour la topologie , définie dans [Vit92], vers un hamiltonien intégrable . Ceci s’étend au cas de hamiltoniens non-autonomes, et au cas où seulement certaines variables sont homogénéisées : par exemple la suite qui dans ce cas aura une limite , qui est un « hamiltonien effectif ». Le but de cet article est de démontrer la convergence de ces suites, ainsi que les premières propriétés de l’opérateur d’homogénéisation et d’en donner des applications aux solutions d’équations de Hamilton-Jacobi, aux quasi-états symplectiques, etc. On démontre aussi que lorsque est convexe en , la fonction coïncide avec la fonction de Mather (cf. [Mat91]) associée au dual de Legendre de . Cela redémontre, dans le cas du tore, que cette fonction est symplectiquement invariante, comme l’avait démontré P. Bernard ([Ber07]) dans le cas général.
Accepté le :
Publié le :
Keywords: Homogenization, symplectic topology, Hamiltonian flow, Hamilton-Jacobi equation, variational solutions
Mots-clés : Flot hamiltonien, homogénéisation, Hamilton-Jacobi, symplectique
Viterbo, Claude 1
CC-BY 4.0
@article{JEP_2023__10__67_0,
author = {Viterbo, Claude},
title = {Symplectic {Homogenization}},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {67--140},
year = {2023},
publisher = {Ecole polytechnique},
volume = {10},
doi = {10.5802/jep.214},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.214/}
}
Viterbo, Claude. Symplectic Homogenization. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 67-140. doi: 10.5802/jep.214
[Aar91] Quasi-states and quasi-measures, Adv. Math., Volume 86 (1991) no. 1, pp. 41-67 | MR | Zbl | DOI
[AB84] On the limits of periodic Riemannian metrics, J. Analyse Math., Volume 43 (1983/84), pp. 183-201 | MR | Zbl | DOI
[AB02] Viscosity solutions methods for singular perturbations in deterministic and stochastic control, SIAM J. Control Optim., Volume 40 (2001/02) no. 4, pp. 1159-1188 | MR | Zbl | DOI
[AB03] Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result, Arch. Rational Mech. Anal., Volume 170 (2003) no. 1, pp. 17-61 | MR | Zbl | DOI
[Ban80] Closed geodesics on complete surfaces, Math. Ann., Volume 251 (1980) no. 1, pp. 83-96 | MR | Zbl | DOI
[Bar94] Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications, 17, Springer-Verlag, Paris, 1994
[BCBA99] A self-adaptative oscillator, European Phys. J. B, Volume 9 (1999), pp. 159-165 | DOI
[BCD97] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997 | DOI
[Ben88] (1988) (Talk at the Workshop of Symplectic Geometry, M.S.R.I., Berkeley, CA, USA)
[Ber03] The action spectrum near positive definite invariant tori, Bull. Soc. math. France, Volume 131 (2003) no. 4, pp. 603-616 | MR | Numdam | Zbl | DOI
[Ber07] Symplectic aspects of Mather theory, Duke Math. J., Volume 136 (2007) no. 3, pp. 401-420 | MR | Zbl | DOI
[Bir27] Dynamical systems, Amer. Math. Soc. Colloquium Publ., IX, American Mathematical Society, Providence, R.I., 1927 (reprinted 1966)
[Bis19] Mather theory and symplectic rigidity, J. Modern Dyn., Volume 15 (2019), pp. 165-207 | MR | Zbl | DOI
[BM58] Asymptotic methods in the theory of nonlinear oscillations, Fizmatlit, Moscow, 1958 (English transl.: Gordon and Breach, New York, 1964)
[Bou02] De la corde au film de savon: de l’auto-adaptation dans les systèmes vibrants, Images de la Physique (2002), pp. 78-83 (may be retrieved from https://www.imo.universite-paris-saclay.fr/~claude.viterbo/Imphy.pdf)
[Bra02] -convergence for beginners, Oxford Lecture Series in Math. and its Applications, 22, Oxford University Press, Oxford, 2002, xii+218 pages | DOI
[Bru91] On a theorem of Sikorav, Enseign. Math. (2), Volume 37 (1991) no. 1-2, pp. 83-87 | MR | Zbl
[BS13] Uniqueness of generating Hamiltonians for topological Hamiltonian flows, J. Symplectic Geom., Volume 11 (2013) no. 1, pp. 37-52 http://projecteuclid.org/euclid.jsg/1362146732 | DOI | MR | Zbl
[Cha84] Une idée du type ‘géodésiques brisées’ pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math., Volume 298 (1984) no. 13, pp. 293-296 | Zbl
[Cha91] Lois de conservation et géométrie symplectique, C. R. Acad. Sci. Paris Sér. I Math., Volume 312 (1991) no. 4, pp. 345-348 | MR | Zbl
[Che96] Critical points of quasifunctions, and generating families of Legendrian manifolds, Funktsional. Anal. i Prilozhen., Volume 30 (1996) no. 2, p. 56-69, 96 | DOI
[CIPP98] Lagrangian graphs, minimizing measures and Mañé’s critical values, Geom. Funct. Anal., Volume 8 (1998) no. 5, pp. 788-809 | Zbl | DOI
[CL83] Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., Volume 277 (1983) no. 1, pp. 1-42 | MR | Zbl | DOI
[Con96] Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalues and variational formula, Indiana Univ. Math. J., Volume 45 (1996) no. 4, pp. 1095-1117 | MR | Zbl | DOI
[CV08] Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., Volume 144 (2008) no. 2, pp. 235-284 | MR | Zbl | DOI
[DG75] Sulla convergenza di alcune successioni d’integrali del tipo dell’area, Rend. Mat. (6), Volume 8 (1975), pp. 277-294 | MR | Zbl
[DGF75] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), Volume 58 (1975) no. 6, pp. 842-850 | MR | Zbl
[DM93] An introduction to -convergence, Progress in Nonlinear Differential Equations and their Appl., 8, Birkhäuser Boston, Inc., Boston, MA, 1993, xiv+340 pages | DOI
[DMGZ94] Global inversion of functions: an introduction, NoDEA Nonlinear Differential Equations Appl., Volume 1 (1994) no. 3, pp. 229-248 | MR | Zbl | DOI
[Eli91] New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc., Volume 4 (1991) no. 3, pp. 513-520 | MR | Zbl | DOI
[EP06] Quasi-states and symplectic intersections, Comment. Math. Helv., Volume 81 (2006) no. 1, pp. 75-99 | MR | Zbl | DOI
[Eva89] The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989) no. 3-4, pp. 359-375 | DOI | MR | Zbl
[Fat97] Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997) no. 9, pp. 1043-1046 | Zbl | DOI
[Fat98] Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., Volume 327 (1998) no. 3, pp. 267-270 | MR | Zbl | DOI
[Fat08] Weak KAM theorem in Lagrangian dynamics, 2008 (Version 10, available from https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf)
[Ger31] Über die Abgrenzung der Eigenwerte einer Matrix, Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na., Volume 6 (1931), pp. 749-754 | Zbl
[Gro99] Metric structures for Riemannian and non-Riemannian spaces, Progress in Math., 152, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pages Based on the 1981 French original (3rd ed. 2007)
[GV22] Viterbo’s spectral bound conjecture for homogeneous spaces, 2022 | arXiv
[Had06] Sur les transformations ponctuelles, Bull. Soc. math. France, Volume 34 (1906), pp. 71-84 | DOI | MR | Numdam | Zbl
[HLS15] New energy-capacity-type inequalities and uniqueness of continuous Hamiltonians, Comment. Math. Helv., Volume 90 (2015) no. 1, pp. 1-21 | DOI | MR | Zbl
[Hum08a] Continuité en topologie symplectique, Ph. D. Thesis, École polytechnique (2008) (https://www.theses.fr/2008EPXX0005)
[Hum08b] On some completions of the space of Hamiltonian maps, Bull. Soc. math. France, Volume 136 (2008) no. 3, pp. 373-404 | DOI | MR | Numdam | Zbl
[Lau92] On the Thom-Smale complex, An extension of a theorem by Cheeger and Müller (Astérisque), Volume 205, Société Mathématique de France, Paris, 1992, pp. 219-233 | Numdam
[LPV87] Homogenization of Hamilton-Jacobi equations, 1987 (Unpublished preprint, available from http://localwww.math.unipd.it/~bardi/didattica/Nonlinear_PDE_%20homogenization_Dott_%202011/LPV87.pdf)
[LS85] Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math., Volume 82 (1985) no. 2, pp. 349-357 | DOI | Zbl
[Mat91] Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991) no. 2, pp. 169-207 | DOI | MR | Zbl
[Mon42] New-York City, 1942 (Centre Pompidou, MNAM-CCI, Paris, https://www.centrepompidou.fr/cpv/resource/c5pRBL/rdyjdr9)
[MVZ12] Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization, J. Modern Dyn., Volume 6 (2012) no. 2, pp. 205-249 | DOI | MR | Zbl
[MZ11] A comparison of symplectic homogenization and Calabi quasi-states, J. Topol. Anal., Volume 3 (2011) no. 3, pp. 243-263 | DOI | MR | Zbl
[Oh05] Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, The breadth of symplectic and Poisson geometry (Progress in Math.), Volume 232, Birkhäuser Boston, Boston, MA, 2005, pp. 525-570 | DOI | MR | Zbl
[OV95] Solutions généralisées pour l’équation de Hamilton-Jacobi dans le cas d’évolution, 1995 (Preprint, available from http://www.math.ens.fr/~viterbo/Ottolenghi-Viterbo.pdf)
[Roo17] Solutions variationnelles et solutions de viscosité, Ph. D. Thesis, Université de Paris-Dauphine (2017) (http://www.theses.fr/2017PSLED023 and https://basepub.dauphine.fr/handle/123456789/16992)
[Sch00] On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., Volume 193 (2000) no. 2, pp. 419-461 | DOI | MR | Zbl
[Sey12] Descent and -rigidity of spectral invariants on monotone symplectic manifolds, J. Topol. Anal., Volume 4 (2012) no. 4, pp. 481-498 | DOI | MR | Zbl
[She22] Symplectic cohomology and a conjecture of Viterbo, Geom. Funct. Anal. (2022) (published online, doi:10.1007/s00039-022-00619-2) | DOI
[Sik89] Rigidité symplectique dans le cotangent de , Duke Math. J., Volume 59 (1989) no. 3, pp. 759-763 | DOI | MR | Zbl
[Sik90] (1990) (Talk given at Paris 7 seminar)
[SV85] Averaging methods in nonlinear dynamical systems, Applied Math. Sciences, 59, Springer-Verlag, New York, 1985, x+247 pages | DOI
[SV10] Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms, Geom. Topol., Volume 14 (2010) no. 4, pp. 2383-2403 | DOI | MR | Zbl
[Thé99] A complete proof of Viterbo’s uniqueness theorem on generating functions, Topology Appl., Volume 96 (1999) no. 3, pp. 249-266 | MR | Zbl | DOI
[Tra94] Symplectic homology via generating functions, Geom. Funct. Anal., Volume 4 (1994) no. 6, pp. 718-748 | MR | Zbl | DOI
[Var04] Geršgorin and his circles, Springer Series in Computational Math., 36, Springer-Verlag, Berlin, 2004 | DOI
[Vit92] Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | MR | Zbl | DOI
[Vit95] Solutions d’équations d’Hamilton-Jacobi et géométrie symplectique, Séminaire X-EDP, École polytechnique, Palaiseau, 1995 (http://www.numdam.org/item/SEDP_1995-1996____A22_0/)
[Vit06a] On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Internat. Math. Res. Notices (2006), 34028, 9 pages Erratum: Ibid., article no. 38784 (4 pages) | MR | Zbl | DOI
[Vit06b] Symplectic topology and Hamilton-Jacobi equations, Morse theoretic methods in nonlinear analysis and in symplectic topology (NATO Sci. Ser. II Math. Phys. Chem.), Volume 217, Springer, Dordrecht, 2006, pp. 439-459 | MR | Zbl | DOI
[Vit18] Non-convex Mather theory, 2018 (submitted to Duke Math. J.) | arXiv
[Vit21] Stochastic homogenization of variational solutions of Hamilton-Jacobi equations, 2021 | arXiv
[Vit22] Inverse reduction inequalities for spectral numbers and applications, 2022 | arXiv
[Wei13] Solutions de viscosité des équations de Hamilton-Jacobi et minmax itérés, Ph. D. Thesis, Université de Paris 7 (2013) (https://tel.archives-ouvertes.fr/tel-00963780)
[Zhu96] Metamorphoses of the Chaperon-Sikorav weak solutions of Hamilton-Jacobi equations, J. Math. Sci., Volume 82 (1996) no. 5, pp. 3737-3746 | MR | Zbl | DOI
Cité par Sources :





