Stabilization of the damped plate equation under general boundary conditions
[Stabilisation de l’équation des plaques amorties sous des conditions au bord générales]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1-65

We consider a damped plate equation on an open bounded subset of d , or a smooth manifold, with boundary, along with general boundary operators fulfilling the Lopatinskiĭ-Šapiro condition. The damping term acts on an internal region without imposing any geometrical condition. We derive a resolvent estimate for the generator of the damped plate semigroup that yields a logarithmic decay of the energy of the solution to the plate equation. The resolvent estimate is a consequence of a Carleman inequality obtained for the bi-Laplace operator involving a spectral parameter under the considered boundary conditions. The derivation goes first through microlocal estimates, then local estimates, and finally a global estimate.

Nous considérons une équation des plaques amorties sur un ouvert borné régulier de d , ou sur une variété lisse et compacte à bord, avec des opérateurs au bord généraux qui satisfont la condition de Lopatinskiĭ-Šapiro. Le terme d’amortissement agit sur une région interne et aucune condition géométrique n’est imposée. Nous démontrons une estimée de résolvante pour le générateur du semi-groupe associé qui implique une décroissance logarithmique de l’énergie de la solution de l’équation des plaques. Cette estimée de résolvante est conséquence d’une inégalité de Carleman obtenue pour le bi-laplacien muni d’un paramètre spectral et sous les conditions au bord considérées. L’obtention de cette inégalité passe tout d’abord par des estimations microlocales, puis locales et enfin une estimation globale.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.213
Classification : 35B45, 35J30, 35J40, 74K20, 93D15
Keywords: Carleman estimates, stabilization, Lopatinskiĭ-Šapiro condition, resolvent estimate
Mots-clés : Inégalité de Carleman, stabilisation, condition de Lopatinskiĭ-Šapiro, estimée de résolvante

Le Rousseau, Jérôme 1 ; Zongo, Emmanuel Wend-Benedo 2

1 Laboratoire Analyse, Géométrie et Applications, Université Sorbonne Paris Nord, CNRS, Université Paris 8 Villetaneuse, France
2 Dipartimento di Matematica, Università degli Studi di Milano Via C. Saldini, 50, 20133 Milan, Italy & Laboratoire Analyse, Géométrie et Applications, Université Sorbonne Paris Nord, CNRS, Université Paris 8 Villetaneuse, France Current address: Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, CNRS 91405 Orsay Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__1_0,
     author = {Le Rousseau, J\'er\^ome and Zongo, Emmanuel Wend-Benedo},
     title = {Stabilization of the damped plate equation under general boundary conditions},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1--65},
     year = {2023},
     publisher = {Ecole polytechnique},
     volume = {10},
     doi = {10.5802/jep.213},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.213/}
}
TY  - JOUR
AU  - Le Rousseau, Jérôme
AU  - Zongo, Emmanuel Wend-Benedo
TI  - Stabilization of the damped plate equation under general boundary conditions
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 1
EP  - 65
VL  - 10
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.213/
DO  - 10.5802/jep.213
LA  - en
ID  - JEP_2023__10__1_0
ER  - 
%0 Journal Article
%A Le Rousseau, Jérôme
%A Zongo, Emmanuel Wend-Benedo
%T Stabilization of the damped plate equation under general boundary conditions
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 1-65
%V 10
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.213/
%R 10.5802/jep.213
%G en
%F JEP_2023__10__1_0
Le Rousseau, Jérôme; Zongo, Emmanuel Wend-Benedo. Stabilization of the damped plate equation under general boundary conditions. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1-65. doi: 10.5802/jep.213

[1] Alabau-Boussouira, Fatiha Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation, J. Evol. Equ., Volume 6 (2006) no. 1, pp. 95-112 | DOI | Zbl | MR

[2] Alabau-Boussouira, Fatiha; Ammari, Kaïs Sharp energy estimates for nonlinearly locally damped PDEs via observability for the associated undamped system, J. Funct. Anal., Volume 260 (2011) no. 8, pp. 2424-2450 | DOI | MR | Zbl

[3] Alabau-Boussouira, Fatiha; Privat, Yannick; Trélat, Emmanuel Nonlinear damped partial differential equations and their uniform discretizations, J. Funct. Anal., Volume 273 (2017) no. 1, pp. 352-403 | DOI | MR | Zbl

[4] Ammari, K.; Tucsnak, M.; Tenenbaum, G. A sharp geometric condition for the boundary exponential stabilizability of a square plate by moment feedbacks only, Control of coupled partial differential equations (Internat. Ser. Numer. Math.), Volume 155, Birkhäuser, Basel, 2007, pp. 1-11 | DOI | MR | Zbl

[5] Barbu, V. Exact controllability of the superlinear heat equation, Appl. Math. Optim., Volume 42 (2000) no. 1, pp. 73-89 | DOI | MR | Zbl

[6] Bardos, Claude; Lebeau, Gilles; Rauch, Jeffrey Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | Zbl | MR

[7] Batty, Charles J. K.; Duyckaerts, Thomas Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., Volume 8 (2008) no. 4, pp. 765-780 | DOI | MR | Zbl

[8] Bellassoued, Mourad; Le Rousseau, Jérôme Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems, J. Math. Pures Appl. (9), Volume 104 (2015) no. 4, pp. 657-728 | DOI | MR | Zbl

[9] Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011, xiv+599 pages | DOI

[10] Bukhgejm, A. L.; Klibanov, M. V. Global uniqueness of a class of multidimensional inverse problems, Soviet Math. Dokl., Volume 24 (1981), pp. 244-247 | Zbl

[11] Calderón, A.-P. Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., Volume 80 (1958), pp. 16-36 | DOI | MR | Zbl

[12] Carleman, T. Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes., Ark. Mat. Astron. Fys., Volume 26 (1939) no. 17, pp. 1-9 | MR | Zbl

[13] Denk, Robert; Schnaubelt, Roland A structurally damped plate equation with Dirichlet-Neumann boundary conditions, J. Differential Equations, Volume 259 (2015) no. 4, pp. 1323-1353 | DOI | MR | Zbl

[14] Dos Santos Ferreira, David Sharp L p Carleman estimates and unique continuation, Duke Math. J., Volume 129 (2005) no. 3, pp. 503-550 | DOI | MR | Zbl

[15] Dos Santos Ferreira, David; Kenig, Carlos E.; Salo, Mikko; Uhlmann, Gunther Limiting Carleman weights and anisotropic inverse problems, Invent. Math., Volume 178 (2009) no. 1, pp. 119-171 | DOI | MR | Zbl

[16] Fernández-Cara, Enrique; Zuazua, Enrique Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 583-616 | DOI | MR | Zbl

[17] Fursikov, A. V.; Imanuvilov, O. Yu. Controllability of evolution equations, Lect. Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996

[18] Hörmander, Lars On the uniqueness of the Cauchy problem, Math. Scand., Volume 6 (1958), pp. 213-225 | DOI | Zbl

[19] Hörmander, Lars Linear partial differential operators, Grundlehren Math. Wiss., 116, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 | DOI

[20] Hörmander, Lars The analysis of linear partial differential operators. III, Classics in Math., Springer, Berlin, 2007 | DOI

[21] Imanuvilov, Oleg; Isakov, Victor; Yamamoto, Masahiro An inverse problem for the dynamical Lamé system with two sets of boundary data, Comm. Pure Appl. Math., Volume 56 (2003) no. 9, pp. 1366-1382 | DOI | Zbl

[22] Isakov, Victor Inverse problems for partial differential equations, Applied Math. Sciences, 127, Springer, Cham, 2017 | DOI

[23] Jaffard, S. Contrôle interne exact des vibrations d’une plaque rectangulaire, Portugal. Math., Volume 47 (1990) no. 4, pp. 423-429 | Zbl

[24] Jerison, David; Kenig, Carlos E. Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2), Volume 121 (1985) no. 3, pp. 463-494 (With an appendix by E. M. Stein) | DOI | Zbl

[25] Kahane, Jean-Pierre Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup., Volume 79 (1962), pp. 93-150 | DOI | Zbl

[26] Kenig, Carlos E.; Sjöstrand, Johannes; Uhlmann, Gunther The Calderón problem with partial data, Ann. of Math. (2), Volume 165 (2007) no. 2, pp. 567-591 | DOI | Zbl

[27] Koch, Herbert; Tataru, Daniel Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Comm. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | DOI | MR | Zbl

[28] Koch, Herbert; Tataru, Daniel Sharp counterexamples in unique continuation for second order elliptic equations, J. reine angew. Math., Volume 542 (2002), pp. 133-146 | DOI | MR | Zbl

[29] Koch, Herbert; Tataru, Daniel Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., Volume 58 (2005) no. 2, pp. 217-284 | DOI | MR | Zbl

[30] Kubo, Masayoshi Uniqueness in inverse hyperbolic problems—Carleman estimate for boundary value problems, J. Math. Kyoto Univ., Volume 40 (2000) no. 3, pp. 451-473 | DOI | MR | Zbl

[31] Le Rousseau, Jérôme; Lebeau, Gilles; Robbiano, Luc Elliptic Carleman estimates and applications to stabilization and controllability. Vol. I. Dirichlet boundary conditions on Euclidean space, Progress in Nonlinear Differential Equations and their Applications, 97, Birkhäuser/Springer, Cham, 2022 | DOI

[32] Le Rousseau, Jérôme; Lebeau, Gilles; Robbiano, Luc Elliptic Carleman estimates and applications to stabilization and controllability. Vol. II. General boundary conditions on Riemannian manifolds, Progress in Nonlinear Differential Equations and their Applications, 98, Birkhäuser/Springer, Cham, 2022 | DOI

[33] Le Rousseau, Jérôme; Robbiano, Luc Spectral inequality and resolvent estimate for the bi-Laplace operator, J. Eur. Math. Soc. (JEMS), Volume 22 (2020) no. 4, pp. 1003-1094 | MR | Zbl | DOI

[34] Lebeau, G. Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9), Volume 71 (1992) no. 3, pp. 267-291 | Zbl

[35] Lebeau, G. Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) (Math. Phys. Stud.), Volume 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73-109 | DOI | Zbl

[36] Lebeau, G.; Robbiano, L. Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations, Volume 20 (1995) no. 1-2, pp. 335-356 | DOI

[37] Lebeau, Gilles; Robbiano, Luc Stabilisation de l’équation des ondes par le bord, Duke Math. J., Volume 86 (1997) no. 3, pp. 465-491 | Zbl | DOI

[38] Ramdani, K.; Takahashi, T.; Tucsnak, M. Internal stabilization of the plate equation in a square: the continuous and the semi-discretized problems, J. Math. Pures Appl. (9), Volume 85 (2006) no. 1, pp. 17-37 | MR | Zbl | DOI

[39] Rauch, Jeffrey; Taylor, Michael Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., Volume 24 (1974), pp. 79-86 | MR | DOI

[40] Sogge, Christopher D. Oscillatory integrals and unique continuation for second order elliptic differential equations, J. Amer. Math. Soc., Volume 2 (1989) no. 3, pp. 491-515 | MR | Zbl | DOI

[41] Tebou, Louis Well-posedness and stability of a hinged plate equation with a localized nonlinear structural damping, Nonlinear Anal., Volume 71 (2009) no. 12, p. e2288-e2297 | MR | Zbl | DOI

[42] Tebou, Louis Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the p-Laplacian, Discrete Contin. Dynam. Systems, Volume 32 (2012) no. 6, pp. 2315-2337 | MR | Zbl | DOI

[43] Zuily, Claude Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., 33, Birkhäuser, Cham, 1983 | DOI

Cité par Sources :