In this paper, we consider a compact connected manifold of negative curvature, and a family of semi-classical Lagrangian states on . For a wide family of phases , we show that , when evolved by the semi-classical Schrödinger equation during a long time, resembles a random Gaussian field. This can be seen as an analogue of Berry’s random waves conjecture for Lagrangian states.
Dans cet article, nous considérons une variété riemannienne connexe, compacte, de courbure sectionnelle négative, et une famille d’états lagrangiens semi-classiques sur . Pour une grande famille de phases , nous montrons que que l’on fait évoluer par l’équation de Schrödinger pendant un temps long ressemble à un champ aléatoire gaussien. Ceci peut être vu comme un analogue de la conjecture des ondes aléatoires de Berry pour les états lagrangiens.
Accepted:
Published online:
Keywords: Quantum chaos, semi-classical analysis, Berry’s conjecture, random waves
Mot clés : Chaos quantique, analyse semi-classique, conjecture de Berry, ondes aléatoires
@article{JEP_2022__9__177_0, author = {Ingremeau, Maxime and Rivera, Alejandro}, title = {How {Lagrangian} states evolve into random~waves}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {177--212}, publisher = {Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.181}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.181/} }
TY - JOUR AU - Ingremeau, Maxime AU - Rivera, Alejandro TI - How Lagrangian states evolve into random waves JO - Journal de l’École polytechnique - Mathématiques PY - 2022 SP - 177 EP - 212 VL - 9 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.181/ DO - 10.5802/jep.181 LA - en ID - JEP_2022__9__177_0 ER -
%0 Journal Article %A Ingremeau, Maxime %A Rivera, Alejandro %T How Lagrangian states evolve into random waves %J Journal de l’École polytechnique - Mathématiques %D 2022 %P 177-212 %V 9 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.181/ %R 10.5802/jep.181 %G en %F JEP_2022__9__177_0
Ingremeau, Maxime; Rivera, Alejandro. How Lagrangian states evolve into random waves. Journal de l’École polytechnique - Mathématiques, Volume 9 (2022), pp. 177-212. doi : 10.5802/jep.181. https://www.numdam.org/articles/10.5802/jep.181/
[1] Eigenfunctions and random waves in the Benjamini-Schramm limit, 2018 | arXiv
[2] Entropy and the localization of eigenfunctions, Ann. of Math. (2), Volume 168 (2008) no. 2, pp. 435-475 | DOI | MR | Zbl
[3] Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 7, pp. 2465-2523 http://aif.cedram.org/item?id=AIF_2007__57_7_2465_0 | DOI | Numdam | MR | Zbl
[4] Regular and irregular semiclassical wavefunctions, J. Phys. A, Volume 10 (1977) no. 12, pp. 2083-2091 http://stacks.iop.org/0305-4470/10/2083 | DOI | MR | Zbl
[5] Probability and measure, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, 2012
[6] On toral eigenfunctions and the random wave model, Israel J. Math., Volume 201 (2014) no. 2, pp. 611-630 | DOI | MR | Zbl
[7] On the number of nodal domains of toral eigenfunctions, Ann. Inst. H. Poincaré Phys. Théor., Volume 17 (2016) no. 11, pp. 3027-3062 | DOI | MR | Zbl
[8] Fractional fields and applications, Mathématiques & Applications, 73, Springer, Heidelberg, 2013 | DOI
[9] Spectral asymptotics in the semi-classical limit, London Math. Soc. Lect. Note Series, 268, Cambridge University Press, Cambridge, 1999 | DOI
[10] Geodesic flows in manifolds of nonpositive curvature, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, American Mathematical Society, Providence, RI, 2001, pp. 525-571 | DOI | MR | Zbl
[11] Partial differential equations, Graduate Studies in Math., 19, American Mathematical Society, Providence, RI, 2010 | DOI
[12] Stable mappings and their singularities, Graduate Texts in Math., 14, Springer-Verlag, New York-Heidelberg, 1973 | DOI
[13] Local weak limits of Laplace eigenfunctions, Tunis. J. Math., Volume 3 (2021) no. 3, pp. 481-515 | arXiv | DOI
[14] Riemannian geometry and geometric analysis, Universitext, Springer, Cham, 2017 | DOI
[15] Global Fourier integral operators and semiclassical asymptotics, Rev. Math. Phys., Volume 12 (2000) no. 5, pp. 749-766 | DOI | MR | Zbl
[16] Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom., Volume 12 (2016) no. 3, pp. 205-278 | DOI | MR | Zbl
[17] Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009) no. 2, pp. 149-233 | DOI | MR | Zbl
[18] Solutions to the Helmoltz equation satisfying the random wave model (work in progress)
[19] Planck-scale number of nodal domains for toral eigenfunctions, J. Funct. Anal., Volume 279 (2020) no. 8, 108663, 21 pages | DOI | MR | Zbl
[20] Semiclassical behaviour of expectation values in time evolved Lagrangian states for large times, Comm. Math. Phys., Volume 256 (2005) no. 1, pp. 239-254 | DOI | MR | Zbl
[21] Semiclassical analysis, Graduate Studies in Math., 138, American Mathematical Society, Providence, RI, 2012 | DOI
Cited by Sources: