[Fonctions harmoniques positives sur le groupe de Heisenberg II]
We describe the extremal positive harmonic functions for finitely supported measures on the discrete Heisenberg group: they are proportional either to characters or to translates of induced from characters.
Nous décrivons les fonctions harmoniques positives extrémales pour les mesures à support fini sur le groupe de Heisenberg discret : elles sont proportionnelles à des caractères ou à des translatées d’induites de caractères.
Accepté le :
Publié le :
Keywords: Harmonic function, Martin boundary, random walk, nilpotent group
Mots-clés : Fonction harmonique, marche aléatoire, frontière de Martin, groupe nilpotent
Benoist, Yves 1
CC-BY 4.0
@article{JEP_2021__8__973_0,
author = {Benoist, Yves},
title = {Positive harmonic functions on {the~Heisenberg} group {II}},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {973--1003},
year = {2021},
publisher = {Ecole polytechnique},
volume = {8},
doi = {10.5802/jep.163},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.163/}
}
TY - JOUR AU - Benoist, Yves TI - Positive harmonic functions on the Heisenberg group II JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 973 EP - 1003 VL - 8 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.163/ DO - 10.5802/jep.163 LA - en ID - JEP_2021__8__973_0 ER -
Benoist, Yves. Positive harmonic functions on the Heisenberg group II. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 973-1003. doi: 10.5802/jep.163
[1] Théorie du potentiel sur les graphes et les variétés, École d’été de Probabilités de Saint-Flour XVIII—1988 (Lect. Notes in Math.), Volume 1427, Springer, Berlin, 1990, pp. 1-112 | Zbl | DOI
[2] Positive harmonic functions on the Heisenberg group I, 2019 | arXiv
[3] Local limit theorems and equidistribution of random walks on the Heisenberg group, Geom. Funct. Anal., Volume 15 (2005) no. 1, pp. 35-82 | Zbl | MR | DOI
[4] Equidistribution of dense subgroups on nilpotent Lie groups, Ergodic Theory Dynam. Systems, Volume 30 (2010) no. 1, pp. 131-150 | Zbl | MR | DOI
[5] Sur l’équation de convolution , C. R. Acad. Sci. Paris, Volume 250 (1960), pp. 799-801 | Zbl
[6] Random walk on unipotent matrix groups, 2015 | arXiv
[7] Random walk on groups with a finite number of generators, Dokl. Akad. Nauk SSSR, Volume 137 (1961), pp. 1042-1045 | MR
[8] A Wiener lemma for the discrete Heisenberg group, Monatsh. Math., Volume 180 (2016) no. 3, pp. 485-525 | MR | DOI
[9] Martin boundary of random walks with unbounded jumps in hyperbolic groups, Ann. Probab., Volume 43 (2015) no. 5, pp. 2374-2404 | Zbl | MR | DOI
[10] Groupes nilpotents et probabilité, C. R. Acad. Sci. Paris Sér. A-B, Volume 273 (1971), p. A997-A998 | Zbl
[11] A survey of algebraic actions of the discrete Heisenberg group, Uspekhi Mat. Nauk, Volume 70 (2015) no. 4(424), pp. 77-142 | MR | DOI
[12] Positive harmonic functions on nilpotent groups, Soviet Math. Dokl., Volume 7 (1966), pp. 241-244 | Zbl | MR
[13] Martin boundaries and random walks, Harmonic functions on trees and buildings (New York, 1995) (Contemp. Math.), Volume 206, American Mathematical Society, Providence, RI, 1997, pp. 17-44 | Zbl | MR | DOI
[14] Asymptotics of the number of geodesics in the discrete Heisenberg group, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 468 (2018) no. XXIX, pp. 39-52
[15] Random walks on infinite graphs and groups, Cambridge Tracts in Math., 138, Cambridge University Press, Cambridge, 2000 | Zbl | MR | DOI
Cité par Sources :





