Let be a non-archimedean local field and let be a connected reductive -group which splits over an unramified extension of . We investigate supercuspidal unipotent representations of the group . We establish a bijection between the set of irreducible -representations of this kind and the set of cuspidal enhanced L-parameters for , which are trivial on the inertia subgroup of the Weil group of . The bijection is characterized by a few simple equivariance properties and a comparison of formal degrees of representations with adjoint -factors of L-parameters.
This can be regarded as a local Langlands correspondence for all supercuspidal unipotent representations. We count the ensuing L-packets, in terms of data from the affine Dynkin diagram of . Finally, we prove that our bijection satisfies the conjecture of Hiraga, Ichino and Ikeda about the formal degrees of the representations.
Soit un corps local non archimédien et soit un -groupe connexe, réductif et deployé sur une extension non ramifiée de . Nous étudions des représentations unipotentes supercuspidales du groupe . Nous établissons une bijection entre l’ensemble de telles -représentations irréductibles et l’ensemble des L-paramètres étendus pour , qui sont triviaux sur le sous-groupe d’inertie du groupe de Weil de . Le bijection est caractérisée par quelques propriétés simples et une comparaison des degrés formels des représentations avec des facteurs adjoints des L-paramètres.
On peut considérer cela comme une correspondance de Langlands locale pour toutes les représentations unipotentes supercuspidales. Nous comptons les L-paquets résultants en termes de données déduites du diagramme de Dynkin affine de . Finalement, nous prouvons que notre bijection satisfait à la conjecture de Hiraga, Ichino et Ikeda sur les degrés formels des représentations.
Accepted:
Published online:
Keywords: Reductive $p$-adic group, cuspidal representation, formal degree, local Langlands correspondence
Mot clés : Groupes réductifs $p$-adiques, représentation cuspidale, degré formel, correspondance de Langlands locale
@article{JEP_2020__7__1133_0, author = {Feng, Yongqi and Opdam, Eric and Solleveld, Maarten}, title = {Supercuspidal unipotent representations: {L-packets} and formal degrees}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {1133--1193}, publisher = {Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.138}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.138/} }
TY - JOUR AU - Feng, Yongqi AU - Opdam, Eric AU - Solleveld, Maarten TI - Supercuspidal unipotent representations: L-packets and formal degrees JO - Journal de l’École polytechnique - Mathématiques PY - 2020 SP - 1133 EP - 1193 VL - 7 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.138/ DO - 10.5802/jep.138 LA - en ID - JEP_2020__7__1133_0 ER -
%0 Journal Article %A Feng, Yongqi %A Opdam, Eric %A Solleveld, Maarten %T Supercuspidal unipotent representations: L-packets and formal degrees %J Journal de l’École polytechnique - Mathématiques %D 2020 %P 1133-1193 %V 7 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.138/ %R 10.5802/jep.138 %G en %F JEP_2020__7__1133_0
Feng, Yongqi; Opdam, Eric; Solleveld, Maarten. Supercuspidal unipotent representations: L-packets and formal degrees. Journal de l’École polytechnique - Mathématiques, Volume 7 (2020), pp. 1133-1193. doi : 10.5802/jep.138. https://www.numdam.org/articles/10.5802/jep.138/
[ABPS17] Conjectures about -adic groups and their noncommutative geometry, Around Langlands correspondences (Contemp. Math.), Volume 691, American Mathematical Society, Providence, RI, 2017, pp. 15-51 | DOI | MR | Zbl
[AMS18] Generalizations of the Springer correspondence and cuspidal Langlands parameters, Manuscripta Math., Volume 157 (2018) no. 1-2, pp. 121-192 | DOI | MR | Zbl
[Bor79] Automorphic -functions, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math.), Volume XXXIII, American Mathematical Society, Providence, RI, 1979, pp. 27-61 | Zbl
[DR09] Depth-zero supercuspidal -packets and their stability, Ann. of Math. (2), Volume 169 (2009) no. 3, pp. 795-901 | DOI | Zbl
[Fen19] A note on the spectral transfer morphism for affine Hecke algebras, J. Lie Theory, Volume 29 (2019) no. 4, pp. 901-926 | MR | Zbl
[FO20] On a uniqueness property of cuspidal unipotent representations, Adv. Math. (2020) (to appear) | DOI
[GG99] Haar measure and the Artin conductor, Trans. Amer. Math. Soc., Volume 351 (1999) no. 4, pp. 1691-1704 | DOI | MR | Zbl
[GM16] Reductive groups and the Steinberg map, 2016 | arXiv
[GR10] Arithmetic invariants of discrete Langlands parameters, Duke Math. J., Volume 154 (2010) no. 3, pp. 431-508 | DOI | MR | Zbl
[Gro97] On the motive of a reductive group, Invent. Math., Volume 130 (1997) no. 2, pp. 287-313 | DOI | MR | Zbl
[Hai14] The stable Bernstein center and test functions for Shimura varieties, Automorphic forms and Galois representations. Vol. 2 (London Math. Soc. Lecture Note Ser.), Volume 415, Cambridge Univ. Press, Cambridge, 2014, pp. 118-186 | DOI | MR | Zbl
[HII08] Formal degrees and adjoint -factors, J. Amer. Math. Soc., Volume 21 (2008) no. 1, pp. 283-304 (Correction: Ibid., p. 1211–1213) | DOI | MR | Zbl
[Kac90] Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | DOI | Zbl
[Kot84] Stable trace formula: cuspidal tempered terms, Duke Math. J., Volume 51 (1984) no. 3, pp. 611-650 | DOI | MR | Zbl
[Kot97] Isocrystals with additional structure. II, Compositio Math., Volume 109 (1997) no. 3, pp. 255-339 | DOI | MR | Zbl
[Lus78] Representations of finite Chevalley groups, CBMS Regional Conf. Series in Math., 39, American Mathematical Society, Providence, RI, 1978 | MR | Zbl
[Lus84] Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984) no. 2, pp. 205-272 | DOI | MR | Zbl
[Lus95] Classification of unipotent representations of simple -adic groups, Internat. Math. Res. Notices (1995) no. 11, pp. 517-589 | DOI | MR | Zbl
[Lus02] Classification of unipotent representations of simple -adic groups. II, Represent. Theory, Volume 6 (2002), pp. 243-289 | DOI | MR | Zbl
[Mor96] Tamely ramified supercuspidal representations, Ann. Sci. École Norm. Sup. (4), Volume 29 (1996) no. 5, pp. 639-667 | DOI | Numdam | MR | Zbl
[Opd16] Spectral transfer morphisms for unipotent affine Hecke algebras, Selecta Math. (N.S.), Volume 22 (2016) no. 4, pp. 2143-2207 | DOI | MR | Zbl
[PR08] Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008) no. 1, pp. 118-198 (with an appendix by T. Haines and M. Rapoport) | DOI | MR | Zbl
[Pra82] Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. math. France, Volume 110 (1982) no. 2, pp. 197-202 | DOI | Numdam | MR | Zbl
[Ree94] On the Iwahori-spherical discrete series for -adic Chevalley groups; formal degrees and -packets, Ann. Sci. École Norm. Sup. (4), Volume 27 (1994) no. 4, pp. 463-491 | DOI | Numdam | MR | Zbl
[Ree00] Formal degrees and -packets of unipotent discrete series representations of exceptional -adic groups, J. reine angew. Math., Volume 520 (2000), pp. 37-93 (with an appendix by F. Lübeck) | DOI | MR | Zbl
[Ree10] Torsion automorphisms of simple Lie algebras, Enseign. Math. (2), Volume 56 (2010) no. 1-2, pp. 3-47 | DOI | MR | Zbl
[Ser79] Local fields, Graduate Texts in Math., 67, Springer-Verlag, New York-Berlin, 1979 | Zbl
[Sol18] A local Langlands correspondence for unipotent representations, 2018 | arXiv
[Spr09] Linear algebraic groups, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009 | Zbl
[Ste68] Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., 80, American Mathematical Society, Providence, RI, 1968 | MR | Zbl
[Tat79] Number theoretic background, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math.), Volume XXXIII, American Mathematical Society, Providence, RI, 1979, pp. 3-26 | Zbl
[Thǎ11] On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic, Proc. Japan Acad. Ser. A Math. Sci., Volume 87 (2011) no. 10, pp. 203-208 http://projecteuclid.org/euclid.pja/1322748851 | DOI | MR | Zbl
Cited by Sources: