[Étude de la stabilité asymptotique des ondes solitaires dans les problèmes dispersifs non linéaires en dimension un]
We review asymptotic stability of solitary waves for nonlinear dispersive equations set on the line. Our focus is threefold: first, the nonlinear Schrödinger equation; second, the notion of full asymptotic stability (which states that perturbations of a solitary wave decompose globally into a solitary wave and a decaying solution); and third, spectral methods. Besides this focus, we summarize the state of the art in a broader context, including nonlinear Klein–Gordon equations, the notion of local asymptotic stability, and virial methods.
Cet article de survol s’intéresse à la stabilité asymptotique des ondes solitaires d’équations dispersives non-linéaires. Nous nous attacherons plus particulièrement à l’équation de Schrödinger non-linéaire, à la notion de stabilité asymptotique complète (qui demande que la solution se décompose asymptotiquement en une onde solitaire et une radiation décroissante) et aux méthodes spectrales. Nous tenterons aussi de présenter l’état de l’art dans un contexte plus général, incluant l’équation de Klein–Gordon non-linéaire, la notion de stabilité asymptotique locale et les méthodes de viriel.
Mots-clés : équations dispersives non linéaires, ondes solitaires, stabilité asymptotique
Germain, Pierre  1
@incollection{JEDP_2024____A6_0,
author = {Germain, Pierre},
title = {A review on asymptotic stability of solitary waves in nonlinear dispersive problems in dimension one},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
note = {talk:6},
pages = {1--22},
year = {2024},
publisher = {R\'eseau th\'ematique AEDP du CNRS},
doi = {10.5802/jedp.687},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jedp.687/}
}
TY - JOUR AU - Germain, Pierre TI - A review on asymptotic stability of solitary waves in nonlinear dispersive problems in dimension one JO - Journées équations aux dérivées partielles N1 - talk:6 PY - 2024 SP - 1 EP - 22 PB - Réseau thématique AEDP du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.687/ DO - 10.5802/jedp.687 LA - en ID - JEDP_2024____A6_0 ER -
%0 Journal Article %A Germain, Pierre %T A review on asymptotic stability of solitary waves in nonlinear dispersive problems in dimension one %J Journées équations aux dérivées partielles %Z talk:6 %D 2024 %P 1-22 %I Réseau thématique AEDP du CNRS %U https://www.numdam.org/articles/10.5802/jedp.687/ %R 10.5802/jedp.687 %G en %F JEDP_2024____A6_0
Germain, Pierre. A review on asymptotic stability of solitary waves in nonlinear dispersive problems in dimension one. Journées équations aux dérivées partielles (2024), Exposé no. 6, 22 p.. doi: 10.5802/jedp.687
[1] Stability and instability of breathers in the U (1) Sasa–Satsuma and nonlinear Schrödinger models, Nonlinearity, Volume 34 (2021) no. 5, pp. 3429-3484 | DOI | MR
[2] Higher-order integrable evolution equation and its soliton solutions, Phys. Lett. A, Volume 378 (2014) no. 4, pp. 358-361 | DOI | MR
[3] On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential, Am. J. Math., Volume 133 (2011) no. 5, pp. 1421-1468 | DOI | MR
[4] Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983), pp. 313-345 | DOI | MR
[5] Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 4, pp. 887-920 | DOI | MR | Numdam
[6] Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Petersbg. Math. J., Volume 4 (1993), pp. 1111-1142
[7] On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003) no. 3, pp. 419-475 | DOI | MR | Numdam
[9] Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., Volume 85 (1982), pp. 549-561 | DOI | MR
[10] Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., Volume 39 (2008) no. 4, pp. 1070-1111 | DOI | MR
[11] Long-time dynamics of small solutions to 1 cubic nonlinear Schrödinger equations with a trapping potential (2021) | arXiv
[12] Long-time asymptotics and stability for the sine-Gordon equation (2020) | arXiv
[13] The 1-dimensional nonlinear Schrödinger equation with a weighted L1 potential, Anal. PDE, Volume 15 (2022) no. 4, pp. 937-982 | DOI | MR
[14] On the d cubic NLS with a non-generic potential (2022) | arXiv
[15] A degenerate edge bifurcation in the 1D linearized nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 6, pp. 2991-3009 | DOI | MR
[16] Asymptotic Stability of Solitary Waves for One Dimensional Nonlinear Schr" odinger Equations (2023) | arXiv
[17] A survey on asymptotic stability of ground states of nonlinear Schrodinger equations II, Discrete Contin. Dyn. Syst., Ser. S, Volume 14 (2021) no. 5, pp. 1693-1716 | MR
[18] Asymptotic stability of kink with internal modes under odd perturbation, NoDEA, Nonlinear Differ. Equ. Appl., Volume 30 (2023) no. 1, 1, 47 pages | MR
[19] The asymptotic stability on the line of ground states of the pure power NLS with (2024) | arXiv
[20] On the asymptotic stability of ground states of the pure power NLS on the line at 3rd and 4th order Fermi Golden Rule (2024) | arXiv
[21] On asymptotic stability on a center hypersurface at the solition for even solutions of the NLKG when (2023) | arXiv
[22] Small energy stabilization for 1D nonlinear Klein Gordon equations, J. Differ. Equations, Volume 350 (2023), pp. 52-88 | MR | DOI
[23] The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014) no. 4, pp. 791-822 | DOI | MR
[24] Inverse scattering on the line, Commun. Pure Appl. Math., Volume 32 (1979), pp. 121-251 | DOI | MR
[25] Modified scattering for odd solutions of cubic nonlinear Schrödinger equations with potential in dimension one, 2016 (https://hal.science/hal-01396705)
[26] Long-time dispersive estimates for perturbations of a kink solution of one-dimensional cubic wave equations, Memoirs of the European Mathematical Society, 1, European Mathematical Society, 2022 | DOI | MR
[27] Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II, J. Anal. Math., Volume 99 (2006) no. 1, pp. 199-248 | DOI | MR
[28] Space-time resonances, Journ. Équ. Dériv. Partielles, Volume 2010 (2010), 8, 10 pages | Numdam
[29] Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not., Volume 2009 (2009) no. 3, pp. 414-432 | MR
[30] Global solutions for the gravity water waves equation in dimension 3, Ann. Math., Volume 175 (2012) no. 2, pp. 691-754 | Zbl | DOI
[31] Quadratic Klein-Gordon equations with a potential in one dimension, Forum Math. Pi, Volume 10 (2022), e17, 172 pages | MR
[32] The nonlinear Schrödinger equation with a potential, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 6, pp. 1477-1530 | DOI | MR | Numdam
[33] On 1d quadratic Klein–Gordon equations with a potential and symmetries, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 2, 17, 39 pages | MR
[34] Transport in the one-dimensional Schrödinger equation, Proc. Am. Math. Soc., Volume 135 (2007) no. 10, pp. 3171-3179 | DOI | MR
[35] Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal., Volume 94 (1990) no. 2, pp. 308-348 | DOI
[36] Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., Volume 120 (1998) no. 2, pp. 369-389 | DOI | MR
[37] Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, Volume 28 (2015) no. 8, p. 2661-265 | MR | DOI
[38] Asymptotic stability near the soliton for quartic Klein–Gordon equation in 1D, Pure Appl. Anal., Volume 5 (2023) no. 4, pp. 795-832 | DOI | MR
[39] A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Integral Equ., Volume 24 (2011), pp. 923-940 | MR
[40] Asymptotic stability of the sine-Gordon kinks under perturbations in weighted Sobolev norms (2023) | arXiv
[41] On asymptotic stability of kink for relativistic Ginzburg–Landau equations, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 213-245 | MR | DOI
[42] On asymptotic stability of moving kink for relativistic Ginzburg–Landau equation, Commun. Math. Phys., Volume 302 (2011), pp. 225-252 | DOI | MR
[43] Kink dynamics under odd perturbations for (1+ 1)-scalar field models with one internal mode (2022) | arXiv
[44] Kink dynamics in the model: asymptotic stability for odd perturbations in the energy space, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 769-798 | DOI | MR
[45] Nonexistence of small, odd breathers for a class of nonlinear wave equations, Lett. Math. Phys., Volume 107 (2017), pp. 921-931 | DOI | MR
[46] On asymptotic stability of nonlinear waves, Sémin. Laurent Schwartz, EDP Appl., Volume 2016-2017 (2017), 18, 27 pages | Numdam
[47] Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes, J. Eur. Math. Soc., Volume 24 (2021) no. 6, pp. 2133-2167 | DOI | MR
[48] A sufficient condition for asymptotic stability of kinks in general (1+ 1)-scalar field models, Ann. PDE, Volume 7 (2021), pp. 1-98 | MR
[49] Global dynamics above the ground state energy for the one-dimensional NLKG equation., Math. Z., Volume 272 (2012), pp. 297-316 | DOI | MR
[50] Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Am. Math. Soc., Volume 19 (2006) no. 4, pp. 815-920 | DOI | MR
[51] Internal modes and radiation damping for quadratic Klein-Gordon in 3D (2021) | arXiv
[52] Internal mode-induced growth in nonlinear Klein–Gordon equations, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 33 (2022) no. 3, pp. 695-727 | Zbl | DOI | MR
[53] Dispersive estimates for 1D matrix Schrödinger operators with threshold resonance, Calc. Var. Partial Differ. Equ., Volume 63 (2024) no. 8, pp. 1-54 | MR
[54] Soliton dynamics for the 1D quadratic Klein-Gordon equation with symmetry, J. Differ. Equations, Volume 344 (2023), pp. 172-202 | MR
[55] Asymptotic stability of solitary waves for the 1D focusing cubic Schr" odinger equation under even perturbations (2024) | arXiv
[56] On modified scattering for 1D quadratic Klein–Gordon equations with non-generic potentials, Int. Math. Res. Not., Volume 2023 (2023) no. 6, pp. 5118-5208 | DOI | MR
[57] Decay and Asymptotics for the One-Dimensional Klein–Gordon Equation with Variable Coefficient Cubic Nonlinearities, SIAM J. Math. Anal., Volume 52 (2020) no. 6, pp. 6379-6411 | DOI | MR
[58] Asymptotics for 1D Klein-Gordon equations with variable coefficient quadratic nonlinearities, Arch. Ration. Mech. Anal., Volume 241 (2021) no. 3, pp. 1459-1527 | DOI | MR
[59] Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity, Volume 19 (2006), pp. 345-353 | DOI | MR
[60] Asymptotic stability of the sine-Gordon kink under odd perturbations (2021) | arXiv
[61] On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation (2023) | arXiv
[62] Interaction of solitons from the PDE point of view, Proceedings of the International Congress of Mathematicians (ICM 2018) (In 4 Volumes) Proceedings of the International Congress of Mathematicians 2018, World Scientific (2018), pp. 2439-2466
[63] Asymptotic stability of solitary waves for the 1D cubic-quintic Schrödinger equation with no internal mode, Probab. Math. Phys., Volume 3 (2023) no. 4, pp. 839-867 | DOI | MR
[64] Asymptotic stability of small solitons for one-dimensional nonlinear Schrödinger equations, Sémin. Laurent Schwartz, EDP Appl., Volume 2023-2024 (2024), 10, 22 pages | Zbl
[65] Asymptotic stability of small standing solitary waves of the one-dimensional cubic-quintic Schrödinger equation, Invent. Math., Volume 237 (2024) no. 3, pp. 1-76 | MR
[66] Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 849-864 | DOI | MR | Numdam
[67] Modified scattering for the cubic NLS with a repulsive delta potential (2017) | arXiv
[68] Asymptotic stability of solitary waves for the NLS with an attractive delta potential (2020) | arXiv
[69] Stability of small solitary waves for the one-dimensional NLS with an attractive delta potential, Anal. PDE, Volume 13 (2020) no. 4, pp. 1099-1128 | DOI | MR
[70] Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., Volume 48 (2008) no. 3, pp. 471-497 | MR
[71] A review of modified scattering for the 1d cubic NLS, RIMS Kôkyûroku Bessatsu, Volume B88 (2021), pp. 119-146 | MR
[72] Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential, J. Math. Phys., Volume 57 (2016) no. 5, 051501, 31 pages | Zbl | MR
[73] Nonlinear Schrödinger equations with exceptional potentials, J. Differ. Equations, Volume 265 (2018) no. 9, pp. 4575-4631 | DOI | MR
[74] Multiple pole solutions of the non-linear Schrödinger equation, Phys. D: Nonlinear Phenom., Volume 25 (1987) no. 1-3, pp. 330-346 | DOI | MR
[75] Local energy control in the presence of a zero-energy resonance (2024) | arXiv
[76] Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions, American Mathematical Society, 2009 no. 156 | DOI | MR
[77] Internal modes of envelope solitons, Phys. D: Nonlinear Phenom., Volume 116 (1998) no. 1-2, pp. 121-142 | DOI | MR
[78] On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, Volume 2 (2001) no. 4, pp. 605-673 | DOI | MR
[79] Bilinear estimates in the presence of a large potential and a critical NLS in 3d, Memoirs of the American Mathematical Society, 1498, American Mathematical Society, 2024
[80] Asymptotic stability of solitary waves for the 1D near-cubic non-linear Schrödinger equation in the absence of internal modes, Nonlinear Anal., Theory Methods Appl., Volume 241 (2024), 113474 | MR
[81] Asymptotic stability of solitons for near-cubic NLS equation with an internal mode (2024) | arXiv
[82] Asymptotic stability of N-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ., Volume 14 (2017) no. 03, pp. 455-485 | DOI | MR
[83] B. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Prog. Theor. Phys. Suppl., Volume 55 (1974), pp. 284-306 | DOI | MR
[84] Dispersive estimates for Schrödinger operators: a survey, Mathematical aspects of nonlinear dispersive equations (Annals of Mathematics Studies), Volume 163, Princeton University Press, 2005, pp. 255-285
[85] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, Volume 34 (1972) no. 1, pp. 62-69
[86] Soliton dynamics and scattering, Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume III: Invited lectures, European Mathematical Society (2006), pp. 459-471 | MR
[87] Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999) no. 1, pp. 9-74 | DOI | MR
[88] Asymptotics for the cubic 1D NLS with a slowly decaying potential (2024) | arXiv
[89] The nonlinear Schrödinger equation: self-focusing and wave collapse, Applied Mathematical Sciences, 139, Springer, 2007 | MR
[90] Nonlinear dispersive equations: local and global analysis, American Mathematical Society, 2006 no. 106 | MR
[91] Why are solitons stable?, Bull. Am. Math. Soc., Volume 46 (2009) no. 1, pp. 1-33 | MR
[92] Asymptotic dynamics of nonlinear Schrödinger equations: Resonance-dominated and dispersion-dominated solutions, Commun. Pure Appl. Math., Volume 55 (2002) no. 2, pp. 153-216 | DOI | MR
[93] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985) no. 3, pp. 472-491 | DOI | MR
[94] Mathematical scattering theory. Analytic theory., Mathematical Surveys and Monographs, 158, American Mathematical Society, 2010 | DOI
Cité par Sources :





