Local limit theorems for complex valued sequences: Old & New
[Historique et avancées récentes sur le théorème de la limite locale]
Journées équations aux dérivées partielles (2024), Exposé no. 5, 15 p.

In probability theory, local limit theorems provide an asymptotic expansion of the convolution powers of a probability distribution supported on with uniform bounds on the remainders. In this review, we present some recent results for the iterated convolution of complex valued integrable sequences in one space dimension. In the so-called parabolic case, we give a complete expansion, at any accuracy order, for these convolution powers and we provide sharp, pointwise, generalized Gaussian bounds for the remainders. We also present an extension of our main result to the semi-discrete setting (time-continuous convolution problems), and discuss several natural perspectives.

En théorie des probabilités, les théorèmes de la limite locale donnent un développement asymptotique des puissances itérées d’une loi de probabilité supportée sur avec des estimations uniformes sur les termes de reste. Dans cette revue, nous présentons des résultats récents pour les convolutions itérées de suites complexes intégrables en une dimension d’espace. Dans le cas parabolique, nous donnons un développement complet, à tous les ordres, et nous obtenons une estimation ponctuelle précise des termes de reste sous forme de Gaussiennes généralisées. Nous présentons également une extension de notre résultat principal dans le cas semi-discret (problèmes continus en temps de convolution), et nous discutons plusieurs perspectives naturelles à ce travail.

Publié le :
DOI : 10.5802/jedp.686
Classification : 42A85, 35K25, 60F99, 65M12
Keywords: Convolution, asymptotic expansion, stability, local limit theorem
Mots-clés : Convolution, développement asymptotique, stabilité, théorème de la limite locale

Coulombel, Jean-François  1   ; Faye, Grégory  1

1 Institut de Mathématiques de Toulouse - UMR 5219, Université de Toulouse ; CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
@incollection{JEDP_2024____A5_0,
     author = {Coulombel, Jean-Fran\c{c}ois and Faye, Gr\'egory},
     title = {Local limit theorems for complex valued sequences:  {Old} & {New}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:5},
     pages = {1--15},
     year = {2024},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     doi = {10.5802/jedp.686},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.686/}
}
TY  - JOUR
AU  - Coulombel, Jean-François
AU  - Faye, Grégory
TI  - Local limit theorems for complex valued sequences:  Old & New
JO  - Journées équations aux dérivées partielles
N1  - talk:5
PY  - 2024
SP  - 1
EP  - 15
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.686/
DO  - 10.5802/jedp.686
LA  - en
ID  - JEDP_2024____A5_0
ER  - 
%0 Journal Article
%A Coulombel, Jean-François
%A Faye, Grégory
%T Local limit theorems for complex valued sequences:  Old & New
%J Journées équations aux dérivées partielles
%Z talk:5
%D 2024
%P 1-15
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.686/
%R 10.5802/jedp.686
%G en
%F JEDP_2024____A5_0
Coulombel, Jean-François; Faye, Grégory. Local limit theorems for complex valued sequences:  Old & New. Journées équations aux dérivées partielles (2024), Exposé no. 5, 15 p.. doi: 10.5802/jedp.686

[1] Beck, M.; Hupkes, H. J.; Sandstede, B.; Zumbrun, K. Nonlinear stability of semidiscrete shocks for two-sided schemes, SIAM J. Math. Anal., Volume 42 (2010) no. 2, pp. 857-903 | DOI | MR

[2] Benzoni-Gavage, S.; Huot, P.; Rousset, F. Nonlinear stability of semidiscrete shock waves, SIAM J. Math. Anal., Volume 35 (2003) no. 3, pp. 639-707 | DOI | MR

[3] Berry, A. C. The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Am. Math. Soc., Volume 49 (1941) no. 1, pp. 122-136 | DOI | MR

[4] Besse, C.; Faye, G.; Roquejoffre, J.-M.; Zhang, M. The logarithmic Bramson correction for Fisher-KPP equations on the lattice , Trans. Am. Math. Soc., Volume 376 (2023) no. 12, pp. 8553-8619 | MR

[5] Bouche, D.; Weens, W. Analyse quantitative des schémas numériques pour les équations aux dérivées partielles, EDP Sciences, 2024

[6] Brenner, P.; Thomée, V.; Wahlbin, L. B. Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Mathematics, 434, Springer, 1975 | Zbl | DOI | MR

[7] Bui, H. Q.; Randles, E. A Generalized Polar-Coordinate Integration Formula with Applications to the Study of Convolution Powers of Complex-Valued Functions on d , J. Fourier Anal. Appl., Volume 28 (2022) no. 2, 19, 74 pages | Zbl

[8] Cœuret, L. Local limit theorem for complex valued sequences, Asymptotic Anal. (2025) (Online First) | DOI

[9] Comtet, L. Advanced combinatorics. The art of finite and infinite expansions, D. Reidel Publishing Co., 1974 | MR

[10] Coulombel, J.-F. The Green’s function of the Lax-Wendroff and Beam-Warming schemes, Ann. Math. Blaise Pascal, Volume 29 (2022) no. 2, pp. 247-294 | DOI | MR | Numdam

[11] Coulombel, J.-F.; Faye, G. Generalized Gaussian bounds for discrete convolution powers, Rev. Mat. Iberoam., Volume 38 (2022) no. 5, pp. 1553-1604 | DOI | MR

[12] Coulombel, J.-F.; Faye, G. The local limit theorem for complex valued sequences: the parabolic case, C. R. Math., Volume 362 (2024), pp. 1801-1818 | DOI

[13] Després, B. Finite volume transport schemes, Numer. Math., Volume 108 (2008) no. 4, pp. 529-556 | DOI | MR

[14] Diaconis, P.; Saloff-Coste, L. Convolution powers of complex functions on , Math. Nachr., Volume 287 (2014) no. 10, pp. 1106-1130 | DOI | MR

[15] Engel, K.-J.; Nagel, R.; Brendle, S. One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 2000 | Zbl | MR

[16] Esseen, C. G. On the Liapounoff Limit of Error in the Theory of Probability, Ark. Mat. Astron. Fysik, A, Volume 28 (1942) no. 9, 9, 19 pages | MR

[17] Greville, T. N. E. On stability of linear smoothing formulas, SIAM J. Numer. Anal., Volume 3 (1966) no. 1, pp. 157-170 | DOI | MR

[18] Hedstrom, G. W. The near-stability of the Lax-Wendroff method, Numer. Math., Volume 7 (1965), pp. 73-77 | DOI | MR

[19] Hedstrom, G. W. Norms of powers of absolutely convergent Fourier series, Mich. Math. J., Volume 13 (1966), pp. 393-416 | DOI | MR

[20] Hupkes, H. J.; Morelli, L.; Schouten-Straatman, W. M.; Van Vleck, E. S. Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations, Difference Equations and Discrete Dynamical Systems with Applications: 24th ICDEA, Dresden, Germany, May 21–25, 2018 24, Springer (2020), pp. 55-112 | DOI | MR

[21] Lawler, G. F.; Limic, V. Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, 123, Cambridge University Press, 2010 | MR

[22] Lax, P. D.; Richtmyer, R. D. Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., Volume 9 (1956), pp. 267-293 | DOI | MR

[23] Lax, P. D.; Wendroff, B. Systems of conservation laws, Commun. Pure Appl. Math., Volume 13 (1960), pp. 217-237 | DOI | MR

[24] Newman, D. J. A simple proof of Wiener’s 1/f theorem, Proc. Am. Math. Soc., Volume 48 (1975), pp. 264-265 | MR

[25] Petrov, V. V. Sums of independent random variables, Springer, 1975

[26] Randles, E. Local limit theorems for complex functions on d , J. Math. Anal. Appl., Volume 519 (2023) no. 2, 126832, 64 pages | DOI | MR

[27] Randles, E.; Saloff-Coste, L. On the convolution powers of complex functions on , J. Fourier Anal. Appl., Volume 21 (2015) no. 4, pp. 754-798 | DOI | MR

[28] Randles, E.; Saloff-Coste, L. Convolution powers of complex functions on d , Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 1045-1121 | DOI | MR

[29] Randles, E.; Saloff-Coste, L. On-diagonal asymptotics for heat kernels of a class of inhomogeneous partial differential operators, J. Differ. Equations, Volume 363 (2023), pp. 67-125 | DOI | MR

[30] Rudin, W. Real and complex analysis, McGraw-Hill, 1987 | MR

[31] Schoenberg, I. J. On smoothing operations and their generating functions, Bull. Am. Math. Soc., Volume 59 (1953) no. 3, pp. 199-230 | DOI | MR

[32] Thomée, V. Stability of difference schemes in the maximum-norm, J. Differ. Equations, Volume 1 (1965), pp. 273-292 | DOI | MR

Cité par Sources :